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Resumo
FRANCISCO, L. P. Aplicações de relatividade numérica em sistemas em colapso
gravitacional. 2021. 51 p. Monografia (Trabalho de Graduação de Engenharia Física) –
Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, 2021.

Nesse trabalho estudamos o fenômeno crítico no colapso gravitacional de campos escalares
sem massa. Realizamos implementações em um programa C++ construído anteriormente
para a aplicação do formalismo ADM na determinação das condições de colapso gravitacio-
nal para um Ansatz com simetria esférica. Essas implementações permitem a generalização
das equações usadas no programa, possibilitando a análise desses mesmos sistemas na
presença de uma constante cosmológica. Validamos essas implementações, com base em
trabalhos anteriores, e calculamos algumas propriedades do fenômeno crítico na presença
da constante cosmológica, analisando algumas das influências causadas pela sua presença
no colapso gravitacional de campos escalares.

Palavras-chave: Colapso gravitacional. Constante cosmológica. Buracos negros. Singula-
ridade.





Abstract
FRANCISCO, L. P. Applications of Numerical Relativity to systems in gravita-
tional collapse . 2021. 51 p. Monograph (Undergraduate Thesis in Engineering Physics)
– Engineering School of Lorena, University of São Paulo, Lorena, 2021.

In this work we study the gravitational collapse of massless scalar fields. We modify a pre-
existing C++ program previously build to apply the ADM formalism to the determination
of the conditions to trigger gravitational collapse from an Ansatz with spherical symmetry.
These modifications allow a generalization of the equations that are used in the program.
This makes possible the analysis of these systems in the presence of a cosmological constant.
We validate our implementation using previous works and calculate some properties of the
critical phenomena in the presence of a cosmological constant, analyzing some aspects of
its influence on the gravitational collapse of scalar fields.

Keywords: Gravitational collapse. Cosmological constant. Black holes. Singularity.
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1 Introdução

A teoria da relatividade geral foi proposta por Albert Einstein para permitir que
as leis e simetrias observadas na teoria da relatividade especial fossem aplicáveis quando
se leva em consideração a presença de campos gravitacionais. A principal diferença entre
as duas teorias está no fato da teoria da relatividade especial assumir a existência de um
observador inercial universal, enquanto a relatividade geral, ao assumir que observadores
inerciais são somente locais (ALCUBIERRE, 2008), permite deduzir que objetos livres de
forças externas não se movem em caminhos necessariamente retilíneos pelo espaço-tempo,
mas seguem caminhos geodésicos que definem, entre outros, as órbitas dos astros. No
espaço-tempo as geodésicas são as curvas de comprimento extremal, o que sugere que o
espaço-tempo não é plano mas sim curvo. De certa forma, a curvatura do espaço-tempo
se manifesta com o que conhecemos como gravidade (TAYLOR; WHEELER, 2000). A
teoria geral da relatividade descreve como o espaço-tempo se deforma na presença de
matéria e energia através das chamadas equações de Einstein. O movimento dos corpos
pode então ser determinado, uma vez que se conhece a estrutura do espaço-tempo (tensor
métrico), através de um outro conjunto de equações conhecidas como equações geodésicas.
Juntas estas equações permitem uma descrição geral de como intervalos de tempo e
comprimentos percorridos por diferentes corpos são percebidos por diferentes observadores,
como partículas com ou sem massa se movem, e como a presença de matéria e energia
afeta a estrutura do espaço-tempo.

Mesmo que as equações de Einstein sejam suficientes para determinar a forma do
espaço-tempo para uma dada distribuição de matéria, poucas soluções exatas para elas
são conhecidas. O conjunto de equações diferenciais parciais não lineares que compõe
essa teoria é de difícil solução. Muitas vezes a única alternativa é fazer aproximações
em sistemas de alta simetria ou usar métodos numéricos para obter soluções numéricas
aproximadas. Um dos sistemas de interesse onde o uso de soluções numéricas é necessário
são os sistemas em colapso gravitacional, que lidam com situações onde uma distribuição
de matéria pode evoluir ao ponto de formar ou não um buraco negro; e se há a formação,
quais as propriedades desse buraco negro e as características desse processo.

O fenômeno de colapso gravitacional possui diversos aspectos interessantes, não só
pelo entendimento a respeito do limiar de formação do buraco negro, mas também, como
foi mostrado inicialmente nos trabalhos de Mattew Choptuik (CHOPTUIK, 1993), esse
fenômeno apresenta propriedades universais que são análogas àquelas presentes nas mais
diversas formas de transição de fases. Dessa forma, o entendimento dessas propriedades
pode demonstrar aplicações não só na astronomia e cosmologia a partir de um entendimento
das propriedades da matéria e seu comportamento, mas também em outras áreas através
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da correspondência AdS/CFT (ARSIWALLA et al., 2011).

Nesse trabalho, estudamos o fenômeno crítico no colapso de campos escalares
na presença de uma constante cosmológica. Para fazer isso, realizamos modificações no
programa SFCollapse1D, desenvolvido para análise do fenômeno de colapso. No capítulo a
seguir faremos uma revisão dos conceitos teóricos necessários para a compreensão desse
fenômeno, assim como uma descrição dos métodos numéricos usados nas simulações
realizadas com o programa SFCollapse1D. No capítulo 3 descrevemos as modificações
realizadas no programa, e mostramos os resultados obtidos em duas situações distintas de
constante cosmológica. Finalmente no capítulo 4 expomos as nossas conclusões e problemas
em aberto que podem ser estudados com este mesmo programa.
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2 Revisão teórica

2.1 A teoria da Relatividade Geral

2.1.1 O espaço-tempo

A teoria da Relatividade Geral não é uma apenas uma teoria da dinâmica de
objetos no espaço-tempo, mas é também uma teoria que incorpora em sua descrição as
características da geometria do próprio espaço-tempo e como este é afetado pela presença
de matéria. A presença de matéria e energia ocasiona a curvatura do espaço-tempo, e tal
noção de curvatura precisa ser descrita intrinsecamente, como veremos na seção 2.1.4,
sem recorrer às propriedades de um espaço maior a partir do qual podemos observar o
espaço-tempo se curvando.

Uma descrição intrínseca da curvatura de um espaço pode ser feita observando-se o
comportamento de trajetórias nesse próprio espaço. Comentaremos mais detalhadamente
sobre isso na seção 2.1.4, mas podemos adiantar que o comportamento das trajetórias ao
percorrer a estrutura que define o espaço-tempo é o mecanismo usado para inferir sua
geometria e curvatura.

As trajetórias que descrevem a linha de mundo1de um objeto são descritas por curvas,
e tais curvas precisam ser contínuas. Para descrever o espaço-tempo e suas propriedades, é
necessário fazer uso de uma estrutura matemática capaz de abrigar curvas contínuas, e
permitir a definição de operações capazes de analisar as propriedades dessas curvas.

A estrutura matemática mais simples que detém essas propriedades é a variedade.
Uma variedade é uma generalização do espaço Rn, trata-se de um espaço topológico2,
que localmente pode ser confundido com Rn(rigorosamente, diríamos que existe um
homeomorfismo3 local entre a variedadeM e o espaço Rn). Essa correspondência local
com Rn, pode ser melhor visualizada na figura 1.

No espaço-tempo, corpos não possuem só trajetórias, possuem também velocidades.
Impomos, então, uma restrição a mais na variedade que define o espaço-tempo, esta precisa
ser diferenciável. Uma vez que o conceito de diferenciabilidade em princípio está definido
para funções f : Rn → Rn, é preciso que este seja generalizado para variedades, isso pode
ser feito garantindo que os mapas de transição das diferentes cartas sejam diferenciáveis,

1 O conjunto de todos os eventos na história de um objeto no espaço-tempo.
2 Um espaço topológico é a estrutura matemática mais simples necessária para a definição de continuidade.

Uma descrição mais clara pode ser encontrada em (MUNKRES, 2014).
3 Um homeomorfismo é um mapeamento entre dois conjuntos que preserva sua estrutura topológica

(MUNKRES, 2014).
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Fonte: Adaptado de (LEE, 2013)

Figura 1 – Sendo U um subconjunto de uma variedade, existe um mapeamento ϕ, que
denominamos uma carta, estabelecendo uma correspondência entre a variedade
e o espaço Rn.

uma vez que esses serão funções do tipo f : Rn → Rn (LEE, 2013).

Dado um ponto de uma variedade diferenciável, por ele passam infinitas curvas,
cada uma delas, se diferenciável, dá origem a um vetor tangente, que representa o vetor
velocidade dessa curva. Todos os vetores que existem, tangentes à variedade em um ponto
p dão origem a um espaço tangente, denominado TpM , que ilustramos na figura 2.

Fonte: Adaptado de (LEE, 2013)

Figura 2 – Dada uma variedade M , em um ponto p passam infinitas curvas, a cada uma
delas podemos associar um vetor tangente v. O conjunto de todos os vetores
tangentes formam um espaço vetorial, que denominamos TpM .

A estrutura de espaço-vetorial presente nos diferentes espaços tangentes permite
a definição de operações, através dos tensores, que permitem analisar a geometria da
variedade.

Na teoria geral da relatividade, assumimos que o espaço tempo pode ser modelado
por uma variedade diferenciável pseudo-riemannianaM de 4 dimensões, i.e., um espaço
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topológico localmente homeomórfico a R4 4. Em cada ponto p deM surge naturalmente
um espaço vetorial tangente TpM e seu dual T ∗pM . A existência de um espaço vetorial em
cada ponto permite assumir que há sobreM um campo vetorial (MISNER; THORNE;
WHEELER, 1970).

Um tensor do tipo (m,n) é um mapa multilinear T : T ∗pM × ....×T ∗pM ×TpM...×
TpM → R , onde o produto cartesiano é realizado m vezes em T ∗pM e n vezes em TpM ,
i.e., um tensor é um mapeamento que associa m elementos de T ∗pM e n elementos de
TpM a um número real. Dizemos que a ordem do tensor é m+ n. Havendo sobreM um
campo vetorial, há portanto, também um campo tensorial construído segundo o produto
cartesiano mencionado. Esse campo permite definir um tensor em cada ponto de M
(RENTELN, 2014).

As equações da relatividade geral são escritas a partir de grandezas tensoriais. Isso
garante que as equações satisfaçam a propriedade de covariância geral, i.e., as equações
mantém a sua forma mediante uma transformação arbitrária de coordenadas.

2.1.2 O tensor métrico

Um tensor de muita importância é o tensor métrico, de tipo (0, 2), que define o
produto interno entre dois vetores no espaço tangente em um determinado ponto. Dados
dois vetores, temos que g(v,u) = u · v, para u,v ∈ TpM . O produto interno também
permite determinar a norma de um vetor, e é o fato deste produto interno não ser
estritamente positivo (o que define uma variedade pseudo-riemanniana em contraposição a
uma variedade riemanniana) que permite a distinção entre vetores nulos, tipo tempo e
tipo espaço.

Tratando-se de um tensor de ordem 2, as componentes do tensor métrico podem
ser expressas como uma matriz quadrada 4× 4:

gµν =


g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33

 , (2.1)

Um deslocamento infinitesimal ds no espaço-tempo pode ser representado por um
vetor infinitesimalmente pequeno, cuja norma é então:

ds2 = gµνdx
µdxν . (2.2)

4 Usamos aqui R4 para expressar o produto cartesiano R×R×R×R ou seja um conjunto de 4 números
que representam as coordenadas (x0, x1, x2, x3). Mas não se trata do espaço euclidiano tradicional, e
sim do espaço de Minkowski.
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A equação 2.2, por abuso de nomenclatura, é muitas chamada de métrica do espaço-
tempo, uma vez que é a medida de distância infinitesimal, específica para aquela geometria
espaço-temporal. Além de uma noção de distância, o conceito de volume está intimamente
ligado ao tensor métrico, em especial pela relação (SCHUTZ, 2010) ∂(x0,x1,x2,x3)

∂(x′0,x′1,x′2,x′3) = √−g,
onde o lado esquerdo da igualdade é o jacobiano de uma transformação de coordenadas de
um sistema O para um sistema de coordenas O′, e g é o determinante de 2.1. A partir
dessa relação o tensor métrico pode ser usado para calcular volumes no espaço-tempo, i.e.,
o diferencial de volume em um sistema com coordenadas xµ é igual a √−g dx4.

2.1.3 Derivadas covariantes

A métrica também possui grande importância na definição de curvatura através da
conexão afim. Uma conexão afim é um objeto geométrico que conecta os diferentes espaços
tangentes. Existem varias conexões possíveis para se escolher, mas por simplicidade e sem
perda de generalidade escolhe-se aquela que é livre de torção 5, essa conexão é conhecida
como conexão de Levi-Civita. As componentes da conexão de Levi-Civita são expressas
pelos símbolos de Christoffel Γλµν e se relacionam ao tensor métrico pela equação6:

Γλµν = 1
2g

σλ(gσµ;ν + gσν;µ − gµν;σ). (2.3)

Ao se derivar grandezas tensoriais, uma correção precisa ser aplicada para garantir
que o objeto resultante seja covariante, i.e., transforma-se como um tensor. Essa correção
é dada pelos símbolos de Christoffel. Ao se incorporar essa correção à derivada de uma
grandeza tensorial chamamos o objeto resultante de derivada covariante desse tensor. Dado
um vetor V e um 1-forma ω 7 as suas respectivas derivadas covariantes são:

∇λV
µ = ∂λV

µ + ΓµλνV ν . (2.4)

∇λωµ = ∂λωµ − Γνλµων . (2.5)

A partir desses resultados, pode-se mostrar que para um tensor genérico do tipo
(m,n) a sua derivada covariante é obtida somando um símbolo de Christoffel para cada
índice contravariante e subtraindo para cada índice covariante. Como exemplo, consideremos
um tensor T αβµ, assím teríamos:

∇λT αβµ = ∂λT αβµ + ΓαλκT κβµ − ΓκλβT ακµ − ΓκλµT αβκ.
5 Torção é uma forma matemática de se descrever como um espaço tangente rotaciona ao longo de um

caminho. Então escolhemos aquela conexão que não apresenta tal rotação .
6 O simbolo ; denota derivada covariante em relação à coordenada que procede esse símbolo.
7 Respectivamente tensores de tipo (1, 0) e (0, 1).
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A inserção da correção dada pelos símbolos de Christoffel pode ser interpretada
como uma correção necessária para se levar em consideração a variação da base do espaço
tangente em uma variedade arbitrária.

2.1.4 Curvatura

Dizemos que um objeto possui curvatura intrínseca se caminhos anteriormente
paralelos, deixam de ser paralelos ao se percorrer a superfície desse objeto. A partir dessa
definição intuitiva podemos inferir que a superfície de um cilindro não é curvada mas a de
uma esfera possui curvatura. 8

Esse conceito pode ser formalizado matematicamente através da definição do tensor
de curvatura de Riemann.

Rσ
αµν = [∇µ,∇ν ]. (2.6)

que nos dá uma medida da não comutatividade das derivadas covariantes em duas coordenas
distintas. Esse tensor pode ser calculado mais facilmente em termos dos símbolos de
Christoffel, assumindo a forma:

Rσ
αµν = ∂µΓσνα − ∂νΓσµα + ΓσµλΓλνα − ΓσνλΓλµα. (2.7)

Dada uma variedade Riemanniana (ou pseudo-riemanniana) o tensor de Riemann
nos indica a mudança que ocorre nas componentes de um tensor quando ele é transportado
paralelamente em um caminho fechado. Se essa mudança for nula, dizemos que essa
variedade não possui curvatura intrínseca.

Em um espaço de quatro dimensões, o tensor de Riemann teria 256 componen-
tes9, entretanto essas componentes não são todas independentes. O tensor de Riemann
apresenta um determinado número de simetrias que reduz substancialmente a quantidade
de componentes independentes. Por construção o tensor de Riemann é antisimétrico na
troca de seus dois últimos índices, além disso apresenta outras simetrias que são impostas
pela conexão afim. Dentre essas simetrias temos que o tensor também será antissimétrico
na troca dos dois primeiros índices e invariante mediante a troca do primeiro par com
o segundo par de índices. Além disso a seguinte equação, conhecida como identidade de
Bianchi, é verdadeira 10(CARROLL, 2003):

Rρσµν +Rρµνσ +Rρνσµ = 0 . (2.8)

8 Basta considerar por exemplo que dois meridianos (sempre ortogonais ao equador e portanto paralelos)
sempre se encontram nos polos da esfera.

9 Teríamos 44 componentes distintas possíveis.
10 Aqui o índice do tensor foi abaixado com o uso do tensor métrico Rρσµν = gραR

α
σµν .
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Levando em conta todas as simetrias impostas, restam apenas 20 componentes
independentes. Ou seja, 20 funções que precisam ser especificadas para se determinar a
curvatura de uma variedade em cada ponto.

Embora possa ser vastamente simplificado pelas suas várias simetrias, o tensor de
Riemann ainda é um objeto difícil de se trabalhar. Um tensor mais simples de tratar e que
ainda contém informação suficiente a respeito da curvatura do espaço tempo11, oferecendo
uma descrição de como um diferencial de volume varia em cada direção do espaço-tempo é
o tensor de Ricci. Ele é obtido a partir do tensor de Riemann pela operação de contração
entre o primeiro e o terceiro índice desse tensor.

Rβα = Rµ
αµβ . (2.9)

Podemos definir ainda o escalar de Ricci, que fornece uma medida da curvatura média da
variedade:

R = gµνRµν . (2.10)

Em posse do tensor de Riemann, de Ricci, do tensor métrico e do escalar de Ricci
podemos agora introduzir as equações de Einstein.

2.1.5 Energia e matéria

Na teoria geral da relatividade, a curvatura do espaço-tempo (quantificada nas
equações de Einstein pelo tensor e escalar de Ricci) é ocasionada pela presença de matéria
e energia. No espaço-tempo quadridimensional, a distribuição de matéria e energia pode
ser representada pelo tensor de energia-momento T µν . Onde T 00 corresponde a densidade
de energia, T j0 ao fluxo de energia, T jj (para j 6= 0 ) à pressão e os demais termos à
tensão (MISNER; THORNE; WHEELER, 1970).

2.1.6 As equações de Einstein

Como em muitas as outras áreas da física, as equações dinâmicas podem ser obtidas
a partir do cálculo variacional. Considerando-se uma ação que contém as variáveis escalares
de interesse do sistema, o ponto estacionário dessa ação será aquele que descreve as
equações dinâmicas do sistema. Na Relatividade Geral essa ação é conhecida como ação de
Einstein-Hilbert e possui sempre duas componentes. S = SG + SM com SG sendo a parte
que descreve a gravitação e SM , os campos de matéria. Essa ação assume então a forma:

S = 1
16π

∫ √
−g R d4x+

∫
L(φ)

√
−g d4x , (2.11)

11 Sendo dado pela contração do tensor de Riemann e sendo ainda um tensor simétrico, o tensor de Ricci
tem somente 10 componentes independentes.
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onde o primeiro termo contém a informação pertinente às derivadas do tensor métrico
(contidas no escalar de Ricci) e o segundo termo expressa a densidade lagrangiana de
matéria no espaço-tempo, e L(φ) é uma função do tipo de matéria. Considerando o tensor
métrico como variável dinâmica, esse funcional S[gµν ] encontra seu ponto estacionário
quando a seguinte equação é satisfeita:

Rµν − 1
2g

µνR = 8πT µν . (2.12)

A equação 2.12 é uma notação compacta para 10 equações diferenciais distintas,
relacionando o tensor de curvatura de Ricci (Rµν), o tensor métrico (gµν), o escalar de
Ricci (R) e o tensor de energia-momento (T µν). Juntas essas equações são conhecidas
como equações de Einstein e definem como o tensor métrico pode ser determinado a partir
de uma distribuição de matéria (tensor energia-momento).

2.1.7 A constante cosmológica

Logo após completar o desenvolvimento da teoria da Relatividade Geral, Albert
Einstein tentou aplicar as suas recém obtidas equações para modelar todo o universo.
Entretanto, o resultado obtido entrava em contradição direta com a crença filosófica vigente
na época de que o universo era estático e eterno (WEINBERG, 1989). A aplicação direta
da equação 2.12 revela um universo dinâmico, não constante, um resultado que Einstein
não podia aceitar. Dessa forma, ele buscou formas de modificar as equações para que não
fosse necessário abandonar a hipótese do universo estático. A forma menos drástica de se
alterar as equações para que uma solução estática fosse possível era com a introdução, no
lado esquerdo da equação de um termo proporcional ao tensor métrico. As equações de
Einstein com constante cosmológica assumem a forma (MISNER; THORNE; WHEELER,
1970):

Rµν − 1
2g

µνR + Λgµν = 8πT µν .

Esse novo conjunto de equações admitia uma solução estática, entretanto, alguns
anos depois com as observações de Hubble referentes a expansão do universo, Einstein
abandonou a constante cosmológica, retornando a sua formulação original para as equações
que levam o seu nome.

No contexto moderno da física teórica e da cosmologia, a constante cosmológica
ressurge, sendo reinterpretada como a energia presente no vácuo, associada a uma compo-
nente do tensor de energia oriunda da polarização do vácuo, derivada da teoria quântica
de campos (SAHNI; KRASíNSKI, 2008).

A presença de uma constante cosmológica, que atua de certo modo como uma
componente do tensor de energia-momento, vai afetar a estrutura geométrica do espaço-
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tempo. Se considerarmos que as outras fontes de energia (o tensor de energia-momento
T µν) são nulas, obtemos como solução das equações de Einstein um espaço-tempo com
curvatura constante. Se Λ > 0 teremos um espaço de curvatura constante positiva, chamado
de espaço de Sitter (dS). Por outro lado, Λ < 0 vai dar origem a um espaço-tempo de
curvatura constante negativa chamado de espaço Anti-De Sitter (AdS). Na presença de
outras fontes de matéria, i.e, T µν 6= 0, como o que acontece quando temos um buraco negro
ou uma nuvem de matéria em determinada região do espaço, as soluções das equações de
Einstein darão origem a uma geometria mais complexa para o espaço-tempo, entretanto
podemos dizer que suficientemente longe das fontes de matéria recuperamos as soluções
dS ou AdS (dependendo do valor atribuído à constante cosmológica). Nesse caso, nos
referimos às soluções como assintoticamente dS ou AdS (CALVO; GARRIGA, 2018).

No que se refere ao colapso gravitacional, a sua relação com a constante cosmológica
é um campo de estudo ainda em desenvolvimento. Resultados como os de (ZHANG et
al., 2016) sugerem que o limiar de formação de um buraco negro tende a crescer com o
aumento da constante cosmológica em um espaço de Sitter, entretanto diferentes cenários
com diferentes fontes de matéria, e como estas são influenciadas pela presença do termo
cosmológico ainda precisam ser melhor investigados.

2.2 O formalismo 3+1

As equações de campo de Einstein não fazem distinção entre tempo e espaço.
Entretanto, é conveniente que se possa escrever as equações como variáveis espaciais
evoluindo no tempo, permitindo assim tratar o problema como um problema de Cauchy, ou
problema de valor inicial, onde podemos especificar as configurações do espaço-tempo em
um instante inicial e usar os métodos numéricos tradicionais para resolução de equações
diferenciais para então determinar como as variáveis de interesse evolvem no tempo. Existe
mais de uma forma de se fazer essa separação de espaço e tempo (ALCUBIERRE, 2008).
Aqui optamos pelo uso do formalismo ADM, um dos mais tradicionais no campo de
relatividade numérica.

O formalismo ADM (ARNOWITT; DESER; MISNER, 2008) é um formalismo
Hamiltoniano para a relatividade geral, que foi desenvolvido inicialmente com o propósito
de enfatizar o aspecto de campo em vez do aspecto geométrico das equações de Einstein,
permitindo tratar a dinâmica do campo gravitacional de forma a possibilitar uma quanti-
zação (STANLEY DESER, 2008). Entretanto encontrou diversas aplicações, incluindo no
campo de relatividade numérica.

As aplicações do formalismo ADM em relatividade numérica vem de uma natu-
ral decomposição (3+1) necessária para a formulação Hamiltoniana, que trabalha com
coordenadas generalizadas e momentos generalizados em um certo instante de tempo t.
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Apresentamos aqui uma revisão do formalismo ADM, focada em suas aplicações
em relatividade numérica.

2.2.1 A decomposição 3+1 do espaço-tempo

Seja (M, g) uma variedade pseudo-Riemanniana equipada com uma métrica g.
Assumimos que existe um difeomorfismo12 entre M e R × Σ13, onde Σ é um conjunto
de hipersuperfícies de Cauchy14. Efetivamente, estamos pensando no espaço-tempo como
composto por diversas "fatias", onde cada uma delas é uma superfície de Cauchy, dada
por uma superfície de nível de uma função escalar t, interpretada aqui como uma medida
universal de tempo15. O fatiamento é feito de tal forma que todas as hipersuperfícies Σ
são do tipo espaço 16, dessa forma o vetor normal à hipersuperfície na é do tipo tempo,
como ilustra a figura 3.

Fonte: Adaptado de (BAUMGARTE; SHAPIRO, 2010)

Figura 3 – Fatiamento do espaço-tempo (variedadeM) em hipersuperfícies tipo-espaço Σ.
na é um vetor futuro tipo tempo.

Consideremos o 1-forma ∇t, associado às superfícies de nível da função t. Sua
norma calculada através do tensor métrico é:

gµν∇µt∇νt = − 1
α2 , (2.13)

onde α é chamado de função lapso, uma medida da quantidade de tempo próprio entre
duas hipersuperfícies. Em termos da função lapso, o vetor normal à hipersuperfície pode
12 Um difeomorfismo é uma relação de equivalência entre duas variedades diferenciáveis.
13 A existência desse difeomorfismo pode sempre ser assumida se M é uma variedade globalmente

hiperbólica (BERNAL; SANCHEZ, 2003).
14 Uma superfície de Cauchy é o conjunto de pontos do espaço em um instante de tempo fixo t.
15 Esse tempo não é o tempo próprio medido por nenhum observador físico. É o tempo de um observador teó-

rico movendo-se ortogonalmente à hipersuperficie, conhecido como observador euleriano(ALCUBIERRE,
2008).

16 Isso significa que a assinatura da métrica definida sobre essa superfície é (+,+,+) (DANIELI, 2018).
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ser escrito como:

na = −α∇at . (2.14)

O vetor unitário normal à hipersuperfície, permite definir o operador de projeção:

P µ
ν = δµν + nµnν . (2.15)

Esse operador projeção permite projetar os tensores do espaço-tempo nas superfícies
espaciais. Aplicando esse operador na métrica g obtemos a métrica espacial:

Pα
µ P

β
ν gαβ = (δαµ + nαnµ)(δβν + nβnν)gαβ

= (δαµδβν + δαµn
βnν + nαnµδ

β
ν + nαnµn

βnν)gαβ
= gµν + gµαn

αnν + nαnµgαν + nαnµn
αnν

= gµν + nµnν + nνnµ − nµnν
= gµν + nµnν

Definimos então a métrica espacial:

γµν = gµν + nµnν . (2.16)

Trata-se de um objeto puramente espacial que reside completamente na hipersu-
perfície Σ.

2.2.2 Curvatura Extrínseca

Anteriormente discutimos sobre como a superfície de um cilindro não possui
curvatura intrínseca. Isso porque ao se transportar paralelamente vetores sobre a superfície
de um cilindro estes não mudam sua orientação relativa, diferentemente do que ocorre na
superfície de uma esfera. Assim, dizemos que não há curvatura intrínseca no cilindro e
o tensor de curvatura de Riemann é identicamente nulo. Entretanto é intuitivo de que
diferentemente de um plano, um cilindro é uma superfície curva, essa curvatura só não
é intrínseca da geometria do objeto (não seria percebida por observadores que habitam
a superfície do cilindro) mas é um artefato de como a superfície do cilindro está imersa
em um espaço de maior dimensionalidade. Geralmente essa curvatura não é importante
para as equações de Einstein pois trabalhando-se com uma variedade de n dimensões, a
curvatura extrínseca seria um artefato de como essa variedade está imersa em um espaço
de dimensão n+ 1.

Entretanto, quando fazemos a decomposição (3 + 1) das equações de Einstein,
passamos a justamente analisar como um conjunto de hipersuperfícies tipo-espaço estão
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imersas em um espaço-tempo. Nesse contexto a curvatura extrínseca das superfícies torna-se
um atributo importante da decomposição (3 + 1).

A curvatura extrínseca pode ser definida como a projeção na superfície espacial da
mudança do vetor normal à superfície quando este é paralelamente transportado.

Fonte: Adaptado de (BAUMGARTE; SHAPIRO, 2010)

Figura 4 – Mudança na direção do vetor normal na ao longo da superfície. A projeção de
δna sobre a superfície espacial nos dá a curvatura extrínseca.

Segundo essa definição, matematicamente podemos escrever (ALCUBIERRE, 2008):

Kµν = −Pα
µ∇αnν . (2.17)

O que deixa claro que o tensor Kµν é puramente espacial uma vez que é resultado
da aplicação do operador de projeção. Equivalentemente a essa definição, podemos definir
a curvatura extrínseca em termos da derivada de Lie17 da métrica espacial:

Kµν = −1
2£nγµν (2.18)

2.2.3 As equações ADM

Até aqui, tudo que fizemos foi definir um conjunto de ferramentas que nos permitem
descrever o comportamento de uma superfície espacial oriunda da decomposição do
espaço-tempo. Vimos como o espaço-tempo decomposto pode ser entendido em termos de
grandezas como a curvatura extrínseca, a métrica espacial e a função lapso. Entretanto, não
especificamos quais propriedades cada uma dessas superfícies espaciais precisam satisfazer
e como a evolução temporal destas superfícies se dá. Para isso precisamos das equações de
Einstein.
17 A derivada de Lie mede a variação de um campo tensorial ao longo de um campo vetorial, nesse caso

tratamos da variação de γij ao longo de na .
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O primeiro passo é decompor os objetos presentes em 2.12 em suas componentes
espaciais e temporais. Isso vai nos dar um conjunto de quatro equações que determinam as
condições que as variáveis (curvatura extrínseca e métrica espacial) precisam satisfazer em
cada superfície espacial, e como essas variáveis evoluem com um passo temporal. Formando
assim, duas equações de restrição e duas equações de evolução.

2.2.3.1 As equações de Restrição

Começamos com a decomposição do tensor de Riemann. Devido as suas simetrias
existem 3 possíveis projeções deste tensor que não são identicamente nulas. A projeção
completa de Rµ

νσκ; A projeção de Rµ
νσκ com um de seus índices projetados na direção

normal e a projeção de Rµ
νσκ com dois dos seus índices projetados na direção normal

(BAUMGARTE; SHAPIRO, 2010).

A relação da projeção totalmente espacial do tensor de curvatura de Riemann em
4 dimensões e da sua contraparte na hipersuperfície tridimensional precisa satisfazer a
chamada equação de Gauss:

Rabcd +KacKbd −KadKcb = P µ
a P

ν
b P

σ
c P

κ
d

(4)Rµνσκ , (2.19)

onde Rabcd é o tensor de curvatura tridimensional, na superfície espacial construido a partir
de γab. A contração de 2.19 com gacgbd resulta em:

nanbGab = (3)R +K2 −KabK
ab .

Substituindo Gab = 8πTab e definindo ρ = nanbTab obtemos finalmente uma das 4
equações que determinam o formalismo ADM, a chamada Restrição Hamiltoniana:

H = (3)R +K2 −KabK
ab − 16πρ = 0 (2.20)

A segunda projeção do tensor de Riemann de interesse, é aquela obtida ao se
projetar um dos índices na direção normal.

P p
aP

q
b P

r
c n

s (4)Rpqrs = DbKac −DaKbc . (2.21)

Novamente, contraindo com gadgbd obtemos a equação de Codazzi:

P abncGbc = Db(γabK −KabK
ab) . (2.22)
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onde Di representa a derivada covariante espacial 18, induzida pela métrica γab. Definindo
a densidade de momento como Sa = −γqansTqs e substituindo o tensor de Einstein:

Ma = DbK
b
a −DaK − 8πSa = 0 . (2.23)

A Equação 2.23 é a chamada equação de restrição do momento. Tanto 2.20 quanto
2.23 são equações que devem ser satisfeitas em cada instante de tempo, i.e., em cada
superfície espacial, respeitando assim as equações de Einstein. Elas representam as equações
de restrição do formalismo ADM.

2.2.3.2 As equações de evolução

Vamos agora deduzir as equações que determinam os valores das variáveis de
interesse no instante (t+ ∆t) conhecendo-se elas no instante t. Primeiramente, precisamos
notar que com base na equação 2.14 o vetor normal na não possui produto unitário com o
1-forma que define as superfícies espaciais. Sendo eles não duais, ao fazer uma translação
normal à superfície Σ(t) para a superfície Σ(t+ ∆t) não temos garantia de que estaremos
ainda no mesmo ponto. Introduzimos então um vetor espacial βi para garantir que as
nossas translações temporais nos levem sempre para o mesmo ponto, como mostra a figura
5.

Fonte: Adaptado de (ALCUBIERRE, 2008)

Figura 5 – Ação do vetor de translação na superfície espacial, garantindo que a análise
seja sempre feita sobre o mesmo ponto.

Passamos então a considerar a variável tempo escrita em termos da função lapso α
e do vetor de translação β:

ta = αna + βa , (2.24)
18 Que nada mais é do que a projeção na superfície da derivada covariante com que estamos acostumados:

Di = P ai ∇a .
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onde a função α e as 3 componentes do vetor βa são escolhas arbitrárias que carregam a
seleção de coordenadas presentes nas equações de Einstein. Assim, são variáveis de calibre
livremente especificadas.

A partir de 2.18, que serve como uma definição da curvatura extrínseca, podemos,
considerando 2.24, escrever:

−2Kab = £nγab

= £(
1
α
t− 1

α
β

)γab
= 1
α

£tγab −
1
α

£βγab

Podemos então concluir que:

£tγab = −2αKab + £βγab . (2.25)

A equação 2.25 é uma das duas equações de evolução que estamos interessados,
representando a evolução temporal da métrica espacial γab.

Antes de obtermos a última equação de evolução, retornemos às projeções do tensor
de Riemann na superfície espacial. A última projeção de interesse é aquela obtida quando
dois dos seus índices são projetados na direção normal. A partir dessa projeção obtemos a
equação de Ricci:

£nKab = ndncP q
aP

r
b

(4)Rdrcq −
1
α
DaDbα−Kc

bKac . (2.26)

A equação de Ricci nos permite obter a derivada de Lie da curvatura extrínseca ao
longo do vetor normal na. Usando o vetor temporal definido em 2.24, a derivada de Lie da
curvatura extrínseca ao longo desse vetor é:

£tKab = α£nKab + £βKab , (2.27)

onde podemos substituir a derivada de Lie ao longo de na pela sua expressão obtida a
partir da equação de Ricci 2.26. Além disso podemos usar a equação de Gauss 2.19 para
substituir as projeções do tensor de Riemann para obter (BAUMGARTE; SHAPIRO,
2010):

£tKab = −DaDbα + α(Rab − 2KacK
c
b +KKab)

− 8πα(Sab −
1
2γab(S − ρ)) + £βKab , (2.28)

onde Sab = P c
aP

d
b Tcd e S = Saa . A equação 2.28 permite determinar a evolução temporal

da curvatura extrínseca.
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As quatro equações que obtivemos representam a decomposição das equações de
Einstein no formalismo (3 + 1). Temos duas equações de restrição (restrição de momento e
Hamiltoniano) e duas equações de evolução (para a métrica espacial e para a curvatura
extrínseca), em posse delas podemos tratar o problema de resolver as equações de Einstein
como um problema de Cauchy, especificando um conjunto de dados no instante inicial e
evoluindo a partir das equações 2.25 e 2.28.

2.2.3.3 A escolha de um sistema de coordenadas

O desenvolvimento matemático até este ponto foi feito sem se considerar nenhum
sistema de coordenadas específico, agora escolhemos um sistema de coordenadas onde
escrever as equações ADM. Escolhemos um conjunto de 3 vetores espaciais normais à
direção temporal, que residem na superfície espacial, logo, satisfazendo:

∇at e
a
(i) = 0 ,

onde i = {1, 2, 3}. Esses vetores se movem de uma superfície espacial para a próxima
seguindo a direção ta. Assim, escolhemos:

ea(0) = ta = (1, 0, 0, 0) . (2.29)

Em termos do vetor normal na e sua correspondente contraparte covariante, temos
que:

∇ate
a
(i) = − 1

α
nae

a
(i) ,

onde vemos que as componentes espaciais do vetor normal covariante precisam ser nulas.
Considerando que a contração de vetores espaciais com o vetor normal precisa ser zero, a
componente ea(0) de todos os vetores espaciais precisa ser zero. Em especial, temos:

βa = (0, βi) .

Podemos então reescrever na em termos de α e β usando 2.24, obtendo:

na =
( 1
α
,−β

i

α

)
. (2.30)

A condição de normalização nana = −1 permite obter a contraparte covariante do
vetor normal:

na = (−α, 0, 0, 0) .
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A partir da equação 2.16 também podemos reescrever o tensor métrico em termos
das variáveis α e βi. Temos que :

gab = γab − nanb .

Levando em consideração que as componentes espaciais de um tensor covariante
precisam se anular, obtemos:

gab =
−1/α2 βi/α2

βi/α2 γij − βiβj/α2

 ,
onde podemos obter a correspondente forma covariante invertendo a matriz:

gab =
−α2 + βlβ

l βi

βj γij

 . (2.31)

Podemos então reescrever o elemento diferencial de linha do espaço-tempo em termos das
variáveis do formalismo ADM, obtendo:

ds2 = (−α2 + βlβ
l)dt2 + 2βidxidt+ γijdx

idxj . (2.32)

Particularizando ainda mais nosso sistema de coordenadas, podemos assumir um
sistema de coordenadas com simetria esférica, onde a métrica espacial assume a forma:

γab =


a2 0 0
0 b2r2 0
0 0 b2r2 sin2 θ

 , (2.33)

onde a e b são parâmetros dimensionais que podem se modificar alterando o dimensiona-
mento do espaço-tempo.

Nessas condições o elemento diferencial de linha do espaço-tempo assume a forma:

ds2 = −α2(r, t)dt2 + a2(r, t)dr2 + r2(dθ2 + sin2 θdφ2) . (2.34)

A escolha de um sistema de coordenadas permite simplificar alguns termos das
equações ADM obtidas anteriormente, podemos escrever então:

(3)R +K2 −KijK
ij = 16πρ , (2.35)

DjK
j
i −DiK = 8πSi , (2.36)
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∂tKij = βl∂lKij +Kil∂jβ
l +Kjl∂iβ

l −DiDjα

+ α( (3)Rij +KKij − 2Kij − 2KilK
l
j) + 4πα[γij(S − ρ)− 2Sij] , (2.37)

∂tγij = −2αKij +Diβj +Djβi , (2.38)

que são as equações que efetivamente substituem as equações de Einsten, permitindo tratar
a evolução do espaço-tempo como um problema de valor inicial. Com isso, concluímos
nossa descrição do espaço-tempo e das equações de Einstein em termos do formalismo
(3 + 1).

2.3 Sistemas em colapso gravitacional
A teoria clássica de relatividade nos diz que para uma estrela de massa suficiente-

mente grande, acima do chamado limite de Tolman–Oppenheimer–Volkoff 19, não há outro
destino possível para a evolução dela a não ser o colapso em um buraco negro (MISNER;
THORNE; WHEELER, 1970). A formação de buracos negros a partir do colapso gravitaci-
onal é um fenômeno comum no universo. Os primeiros trabalhos a investigar esse fenômeno
do ponto de vista da relatividade numérica foram os trabalhos de Mathew Choptuik
(CHOPTUIK, 1993). Ele foi capaz de observar que um campo escalar (representando uma
distribuição de energia no espaço-tempo) poderia colapsar formando uma singularidade em
condições específicas. Esse colapso era função da amplitude η desse campo. Para η > η∗

ocorre a formação de um buraco negro, porém para η < η∗ o campo escalar se dispersa
completamente; esse comportamento caracteriza o chamado fenômeno crítico, onde um
comportamento ou propriedade de um sistema apresenta padrões universais característicos
de uma transição de fase que são independentes de muitas variáveis do sistema. Tratando-se
do colapso de campos escalares, Choptuik observou que o comportamento do sistema
seguia uma lei exponencial característica de vários fenômenos de transição de fases, onde a
massa do buraco negro próximo do ponto crítico obedece a relação:

MBH = |η − η∗|γ, (2.39)

onde γ é um escalar20 universal21. Choptuik concluiu que γ ≈ 0, 37, esses resultados
foram posteriormente confirmados por outros métodos, como métodos perturbativos
(GUNDLACH, 1997; MARTÍN-GARCÍA; GUNDLACH, 1999) .
19 Esse limite equivale a aproximadamente duas vezes a massa do Sol.
20 Usamos γ por se tratar de uma notação padrão. Não há relação direta com a métrica espacial do

formalismo ADM.
21 γ é universal no sentido de ser o mesmo valor, independente das condições iniciais do sistema quando

a mesma fonte de matéria é considerada. Portanto, o valor de γ obtido por Choptuik deveria ser o
mesmo para campos escalares sem massa, independente de outras propriedades inferidas durante os
cálculos.
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Além do comportamento crítico próximo ao valor de amplitude η∗, também existe
uma periodicidade no comportamento da solução, que pode ser observada em intervalos
espaço-temporais muito menores. Para observar tal periodicidade é conveniente analisar
as variáveis do sistema em sua forma logarítmica. Como exemplo, podemos analisar o
tempo próprio logarítmico Λ = ln(τ∗ − τ)22, assim como fez Choptuik, e constatar que o
comportamento do campo escalar apresenta uma periodicidade, repetindo-se em Λ+∆, com
∆ = 3, 43, porem com uma escala e∆ ≈ 30 vezes menor. Essa periodicidade é conhecida
como echoing e ∆, denominado período de eco, que também é uma grandeza universal
para o tipo de matéria estudada. As propriedades do fenômeno crítico referentes ao echoing
também foram replicados por métodos semi-analíticos (MARTÍN-GARCÍA; GUNDLACH,
2003).

Com o advento de métodos mais refinados e recursos computacionais mais pode-
rosos, e com o uso de outros métodos, como métodos semi-analíticos, a lei exponencial
descoberta por Choptuik (equação 2.39) foi modificada para melhor adequação com os
dados. Atualmente, os resultados sugerem (GUNDLACH, 1997):

lnMBH = C + γ ln |η − η∗|+ f(ln |η − η∗|) , (2.40)

onde f é uma função periódica com frequência angular:

ω = 4πγ
∆ . (2.41)

A lei 2.40 é aplicável a várias grandezas, não somente a massa. Na verdade, qualquer
grandeza Q com dimensão de comprimento ζ obedece a lei:

lnQ = C + ζγ ln |η − η∗|+ f(ln |η − η∗|) . (2.42)

Trabalhando no regime subcrítico, como optamos por fazer nesse trabalho, não
podemos analisar a massa do buraco negro, tendo em vista que esse não irá se formar,
mas podemos substituir a massa pela densidade energética ρ (a ser definida na próxima
seção) no ponto central (r = 0) e esperamos o mesmo comportamento de 2.42, i.e23.:

ln ρmax
central = C − 2γ ln |η − η∗|+ f(ln |η − η∗|) . (2.43)

Com base em (BAUMGARTE, 2018) assumimos que a função f tem a forma:

f(x) = A sin(ωx+ φ0) , (2.44)

Com frequência:
ω = 4πγ

∆ . (2.45)
22 Onde τ∗, chamado tempo de acumulação, é a medida de tempo próprio necessária para estabelecer o

colapso ou dispersão do campo escalar.
23 Para o caso da densidade de energia que tem dimensão L−2, ζ = −2.
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Além disso, conjectura-se que a partir de ∆ e γ podemos obter uma outra constante
universal, cujo valor deve ser (HOD; PIRAN, 1997):

T = ∆
2γ ≈ 4, 6 . (2.46)

2.3.1 Campos escalares

A evolução de um campo escalar ψ sem massa é descrita pela equação de Klein-
Gordon (CHIRENTI, 2017):

1√
−g

∂µ(gµν
√
−g∂νψ) = 0 , (2.47)

O campo escalar pode ser acoplado ao campo gravitacional através de uma densidade
lagrangiana:

L(φ) = −1
2g

µν∂µψ∂νψ . (2.48)

Variando a ação 2.11 recuperamos as equações de Einstein e a equação de Klein-Gordon,
que podem ser colocadas na forma:

∂tΨ = ∂r

(
α

a
Π
)
, (2.49)

∂tΠ = 1
r2∂r

(
r2α

a
Ψ
)
, (2.50)

onde usamos as variáveis auxiliares:

Ψ(t, r) = ∂rψ(t, r) , Π(t, r) = a(t, r)
α(t, r)∂tψ(t, r) , (2.51)

com o Ansatz 2.34 para a métrica. Variando a ação podemos também obter o tensor
energia-momento para um campo escalar, equivalente a :

Tψµν = ∂µψ∂νψ −
1
2gµν∂αψ∂

αψ . (2.52)

Segue que a densidade energética definida para o formalismo ADM será24:

ρ = nµnνTψµν = Ψ2 + Π2

2a2 . (2.53)

A escolha de um calibre com simetria esférica 2.34 implica que K = Kr
r . Assim, a

restrição do Hamiltoniano se torna:

H = (3)R− 16πρ , (2.54)
24 Por consequência, ρmax

central = ρ(0, t) = Π2(0,t)+Ψ2(0,t)
2a2(0,t) .
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a qual, com o escalar de Ricci:

(3)R = 4
ra2

(
∂ra

a
+ a2 − 1

2r

)
, (2.55)

se torna:
∂ra

a
+ a2 − 1

2r = 2πr(Π2 + Ψ2) , (2.56)

sendo essa uma das equações de restrição para o sistema de equações de um campo escalar
no formalismo ADM. Outra equação importante é obtida observando-se que para o calibre
escolhido Kθ

θ = 0 = Kφ
φ , por consequência ∂tKθθ = 0 e, a partir de 2.38, obtemos:

∂tα

α
− ∂ra

a
− a2 − 1

r
= 0 (2.57)

2.4 Métodos numéricos para solução de equações diferenciais
Para resolução numérica das equações diferenciais, são necessários métodos es-

pecíficos que permitem trabalhar com funções de natureza contínua em um domínio
computacional discreto. Há vários métodos para resolução de equações diferenciais, entre-
tanto para se trabalhar com equações diferenciais parciais e seus respectivos sistemas, é
comum o emprego dos métodos de diferenças finitas (LI; QIAO; TANG, 2018).

Esse método consiste em aplicar uma aproximação a grandezas contínuas, como
derivadas e funções. Para as derivadas podemos assumir que um diferencial é representado
por uma diferença discreta. Isso pode ser feito através da teoria de expansão em série de
Taylor, onde uma função f(x) pode ser escrita como

f(x+ h) = f(x) + hf ′(x) + h2

2 f
′′(x) + .... .

Podemos então, através de uma aproximação (desconsiderando termos de ordem
maior ou igual a 2), usar:

f ′(x) = f(x+ h)− f(x)
h

,

obviamente, ao fazer tal aproximação estamos inserindo um erro nos nossos cálculos.
Entretanto, esse erro pode ser reduzido considerando aproximações de ordem superior
para as derivadas, por exemplo, podemos escrever:

f ′(x) = 2f(x+ h) + 3f(x)− 6f(x− h) + f(x− 2h)
6h ,

que é uma aproximação de terceira ordem para f ′(x). Aproximações mais precisas, de ordem
maior podem ser obtidas a partir da expansão da série de Taylor em ordens superiores e da
substituição dos diferentes termos. O método de diferenças finitas transforma o problema
de se resolver uma equação (ou sistema de equações) diferencial(ais) em um problema onde
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se deve resolver uma equação (ou sistema de equações) algébrica(s). Para a resolução desse
sistema outros métodos numéricos podem ser necessários, como o método da bisseção ou
método de Newton (LI; QIAO; TANG, 2018).

As equações que estamos interessados em resolver nesse trabalho formam o sistema
de equações de Einstein-Klein-Gordon no formalismo ADM, composto pelas equações 2.49,
2.50, 2.56 e 2.57. Discretizando (reescrevendo as equações como diferenças finitas) até a
segunda ordem, obtemos25:

Ψn+1
j −Ψn−1

j

2∆t = 1
2∆r

[αnj+1

anj+1
Πn
j+1 −

αnj−1

anj−1
Πn
j−1

]
(2.58)

Πn+1
j − Πn−1

j

2∆t = 3
r2
j+1 − r2

j−1

[
r2
j+1

αnj+1

anj+1
Πn
j+1 − r2

j−1
αnj−1

anj−1
Πn
j−1

]
(2.59)

An+1
j+1 − An+1

j

∆r +
exp

{
(An+1

j+1 − An+1
j )

}
− 1

2rj+1/2

− 2πrj+1/2

{[1
2

(
Ψn+1
j+1 + Ψn+1

j

)]2
+
[1
2

(
Πn+1
j+1 + Πn+1

j

)]2}
= 0 (2.60)

αn+1
j − αn−1

j

2∆r + 1
2(αn+1

j+1 + αn+1
j )

{1− [1
2(an+1

j + an+1
j+1 )]2

rj+1/2
−

2(an+1
j − an+1

j+1 )
∆r(an+1

j + an+1
j+1 )

}
= 0 (2.61)

Para esse sistema de equações a estabilidade é garantida contanto que a condição
de Courant-Friedrichs-Lewy (COURANT; FRIEDRICHS; LEWY, 1967) seja satisfeita26:

C = ∆t
∆r ≤ 1 (2.62)

25 Representamos as equações para um ponto espacial j em um instante de tempo n .
26 Em nossa implementação, tomamos o número C = 0, 5 .
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3 Resultados

3.1 SFCollapse1D

Nossos estudos em colapso gravitacional foram feitos com base no programa SF-
collapse1D (WERNECK et al., 2021). Trata-se de um código desenvolvido usando-se
o formalismo ADM, específico para trabalho com campos escalares em um sistema de
coordenadas esférico. O código utiliza o método das diferenças finitas de segunda ordem
para resolução das equações diferenciais parciais.

SFCollapse1D apresenta um recurso extra que torna os cálculos mais eficientes e
possíveis de serem realizados em sistemas computacionais de menor escala. Com o uso da
seguinte transformação de coordenadas (RUCHLIN; ETIENNE; BAUMGARTE, 2018):

r = rmax
sinh ( x

w
)

sinh ( 1
w

) , (3.1)

onde rmax representa a extensão do domínio da grade numérica, w é um parâmetro a
ser especificado que define a densidade de pontos próximo da origem. Com esse sistema
de coordenadas é possível definir uma amostragem uniforme para x ∈ [0, 1], que será
transformada em uma amostragem não uniforme em r, obtendo uma maior densidade de
pontos próximo à origem, onde uma maior resolução é necessária devido às distorções do
espaço-tempo. O uso desse sistema de coordenadas contorna a necessidade de se utilizar
os métodos AMR (Adaptative Mesh Refinement) (CHOPTUIK, 2000; HERN, 2000).

Para a execução do programa é necessário se especificar as configurações da grade
numérica que descreve a discretização do espaço-tempo. Nos nossos cálculos, sempre consi-
deramos os valores Nr = 320, rmax = 16, w = 0, 08. Tais valores, já foram anteriormente
utilizados para replicar com alta precisão os resultados que caracterizam o fenômeno crítico
no colapso de campos escalares sem massa (WERNECK, 2020).

A rotina utilizada pelo programa para a determinação do colapso gravitacional,
se baseia no fato de que a função lapso α mede o intervalo de tempo próprio entre duas
superfícies espaciais. Se α→ 0 próximo da origem do sistema de coordenadas, assumimos
a formação de uma singularidade e o colapso do campo escalar em questão.

Para determinar o valor da amplitude crítica para o campo escalar, η∗ na equação
2.39, executamos SFCollapse1D para diferentes valores de amplitude η 1. Mantemos um
registro dos valores de amplitude que definem ou não colapso, e usamos uma rotina de
1 Para as configurações de grade já especificadas, os valores de η utilizados variam de 0, 3 até 0, 5, e o

campo crítico sempre tende a estar entre esses dois valores.
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bisseção para delimitar com precisão cada vez maior o intervalo onde o valor da amplitude
crítica está localizada. Como medida de precisão usamos o erro:

δη = ηforte − ηfraco

ηfraco
, (3.2)

onde ηforte corresponde à amplitude do campo escalar que ocasiona colapso gravitacional,
e ηfraco àquela que gera dispersão do campo escalar.

Nas nossas análises refinamos os cálculos até δη ≈ 10−8, o que muito provavelmente
foi um dos fatores limitantes que não nos permitiu obter valores tão próximos como os da
literatura. Resultados anteriores capazes de replicar as grandezas obtidas por Choptuik
(WERNECK, 2020) fizeram o refinamento de δη até 10−13.

Como mencionado, o critério para determinação do colapso do campo escalar é a
análise da função lapso α na origem do sistema de coordenadas. No programa SFcollapse1D
esse resultado é anotado em cada passo iterativo no processo da solução das equações
diferenciais por diferenças finitas.

Em uma situação onde o colapso é observado, o comportamento típico da função
lapso no ponto central é mostrado na figura 6.

Fonte: O Autor.

Figura 6 – Valor da função lapso no ponto central, em um caso de colapso do campo
escalar.

Quando ocorre a dispersão do campo escalar o comportamento da função lapso é
tender ao valor unitário, como demonstra a figura 7.
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Fonte: O Autor.

Figura 7 – Valor da função lapso no ponto central, em um caso de dispersão do campo
escalar.

3.2 Fenômeno Crítico de Campos Escalares no Espaço Plano

Uma vez determinado o valor de η∗ com a precisão desejada, realizamos diversas
execuções no regime subcrítico (η < η∗), em cada uma delas registramos os valores de η e
os valores da densidade energética no ponto central ρ(0, t), calculadas a partir dos valores
de Π, Ψ e a, que são obtidos em cada instante de tempo por SFcollapse1D no processo de
resolução do programa.

Em posse dos valores de η e de ρmax
central realizamos um ajuste numérico em duas etapas.

Primeiro, consideramos apenas a componente linear da equação 2.43 e realizamos um ajuste
com os valores de η como variável independente e ρmax

central como variável dependente. As
variáveis η∗, γ e C são parâmetros a serem especificados pelo ajuste2. Ou seja, realizamos
um ajuste linear em:

ln ρmax
central = C − 2γ ln |η − η∗| . (3.3)

Obtemos então uma reta que melhor se ajusta aos dados a partir de valores de η∗,
γ e C. Representamos esse resultado na figura 8.

Com os valores obtidos para η∗, γ e C, fazemos um segundo ajuste, onde a nossa

2 Para a realização do ajuste usamos a biblioteca SciPy (VIRTANEN et al., 2020).
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Fonte: O Autor.

Figura 8 – Ajuste linear para os dados de z = ln ρmax
central em função de ln |η − η∗|

variável independente passa a ser ln |η − η∗| e nossa variável dependente é:

ln ρmax
central − C + 2γ ln |η − η∗| ,

ou seja, estamos subtraindo dos valores pmax
central a componente linear que determinamos,

fazendo com que nossa variável dependente passe a ser somente a componente oscilatória
dos dados. Realizamos então um ajuste com a função:

f(x) = A sin(ωx+ φ0) , (3.4)

com x = ln |η − η∗|. Com esse segundo ajuste determinamos os parâmetros ω, A e φ0.
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Na figura 9 mostramos o resultado final do ajuste da função 2.43 nos dados obtidos
a partir de SFcollapse1D. Através desse procedimento obtivemos os valores dos parâmetros

Fonte: O Autor.

Figura 9 – Ajuste final para os dados de z = ln ρmax
central em função de ln |η − η∗|.

ajustados, mostrados na tabela 1.

Fonte: O Autor.
Parâmetro Valor encontrado

η∗ 0, 336425
C −3, 396793
γ 0, 408158
A 0, 274121
ω 1, 408357
φ0 2, 219645

Tabela 1 – Resultados obtidos para o fenômeno crítico no espaço plano.

Calculamos também os valores para ∆ e T , o período de oscilação universal. Obtivemos ∆ =
3, 641876 e T = 4, 461359, resultados razoavelmente próximos aos da literatura (T = 4, 6 e
∆ = 3, 43). Esses resultados sugerem que mesmo com o uso de precisões inferiores do que
o estado da arte da literatura, fomos capazes de observar o comportamento crítico. Assim
nossos resultados para sistemas com a constante cosmológica, os quais apresentaremos a
seguir, podem ser usados não só qualitativamente mas também quantitativamente para se
mapear a influência da constante cosmológica no fenômeno crítico no colapso de campos
escalares.
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3.3 Colapso de campos escalares na presença de uma constante
cosmológica
Para considerar os efeitos causados pela presença de uma constante cosmológica

devemos retornar à ação de Einstein-Hilbert com o termo de Klein-Gordon, dessa vez
consideramos a ação:

S =
∫
d4x
√
−g
[ 1
16π (R− 2Λ)− 1

2g
µν∂µψ∂νψ

]
(3.5)

Aplicando os princípios do cálculo variacional e seguindo um procedimento semelhante
com aquele da seção 2.3.1 chegamos nas seguintes equações:

∂tΨ = ∂r

(
α

a
Π
)
, (3.6)

∂tΠ = 1
r2∂r

(
r2α

a
Ψ
)
, (3.7)

∂ra

a
+ a2(1− Λr2)− 1

2r = 2πr(Π2 + Ψ2) , (3.8)

∂tα

α
− ∂ra

a
− a2(1− Λr2)− 1

r
= 0 . (3.9)

Assim, discretizamos essas equações, seguindo o método das diferenças finitas
descrito na seção 2.4 e substituímos no código fonte de SFcollapse1D.

O primeiro passo foi replicar os resultados da seção anterior, tomando Λ = 0. Com
isso pudemos atestar que nossa implementação não possuía nenhum erro 3. Em seguida,
usamos a nossa implementação modificada do programa para avaliar o fenômeno crítico
no espaço Anti de Sitter.

3.4 Fenômeno crítico de campos escalares no espaço AdS
O procedimento seguido para a análise do fenômeno crítico no espaço AdS é o

mesmo descrito anteriormente para campos escalares no espaço plano. Apresentamos aqui
os principais resultados e suas comparações com o caso anterior.

3.4.1 AdS com Λ = −0, 001

Configurando SFcollapse1D com Λ = −0, 001 , realizamos os calculos para determi-
nar o valor do campo crítico com um erro δη ≈ 10−8. Realizamos o ajuste em duas etapas
e representamos na figura 10 o resultado final do ajuste.
3 Nossa implementação final com as modificações no código de SFcollapse1D podem ser consultadas em

(LUCAS P. FRANCISCO;AMANDA G. SATO, 2021)
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Fonte: O Autor.

Figura 10 – Ajuste final para os dados de z = ln ρmax
central em função de ln |η − η∗|, para

Λ = −0, 001.

Na tabela 2 apresentamos os resultados para os parâmetros do ajuste.

Fonte: O Autor.
Parâmetro Valor encontrado

η∗ 0, 336300
C −3, 617329
γ 0, 428248
A 0, 251261
ω 0, 606650
φ0 −0, 734963

Tabela 2 – Resultados obtidos para o fenômeno crítico no espaço AdS com Λ = −0, 001.
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Com os valores de γ e ω e a partir de 2.45 calculamos ∆ = 8, 870881 e T =
10, 357188.

3.4.2 AdS com Λ = −0, 01

Repetindo o mesmo procedimento descrito na seção anterior, porém configurando
SFcollapse1D para Λ = −0, 01, obtivemos o ajuste da figura 11.

Fonte: O Autor.

Figura 11 – Ajuste final para os dados de z = ln ρmax
central em função de ln |η − η∗| para

Λ = −0, 01.

Esse ajuste foi feito em um intervalo menor de valores de ln |η − η∗| devido à
presença de um comportamento inesperado para valores mais negativos dessa grandeza.
Atribuímos esse comportamento a instabilidades do método numérico e optamos por não
incluir na nossa análise. Para os parâmetros do ajuste, calculamos os dados da tabela 3.

Fonte: O Autor.
Parâmetro Valor encontrado

η∗ 0, 335176
C −4, 004196
γ 0, 472388
A 0, 210952
ω 0, 996367
φ0 0, 193102

Tabela 3 – Resultados obtidos para o fenômeno crítico no AdS com Λ = −0, 01.
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Os valores para os períodos oscilatórios foram ∆ = 5, 957846 e T = 6, 306097.

3.5 Análise dos resultados
Os resultados que obtivemos, estão em diversos aspectos dentro das expectativas.

Como citamos anteriormente, (ZHANG et al., 2016) encontrou que a presença de uma
constante cosmológica positiva (em um espaço dS) teria como um dos efeitos um aumento
do limiar de formação de um buraco negro (representado aqui pelo campo crítico). Nossos
resultados mostraram que a presença de uma constante cosmológica negativa (AdS) tende
a diminuir o valor do campo crítico, como mostra na tabela 4.

Fonte: O Autor.
Λ η∗
0 0,336425

−0, 001 0,336300
−0, 01 0,335176

Tabela 4 – Campos críticos para diferentes valores de constante cosmológica.

Outro resultado interessante que obtivemos é a influência da constante cosmológica no
período universal do fenômeno de echoing. A presença de uma constante cosmológica
aparenta aumentar o período, ou reduzir a frequência de oscilação observada na solução
subcrítica. Como mostra a tabela 5.

Fonte: O Autor.
Λ T
0 4, 461359

−0, 001 10, 357188
−0, 01 6, 306097

Tabela 5 – Período universal para diferentes valores de constante cosmológica.

A comparação entre os dois valores de constante cosmológica já é mais difícil, em parte
pelo fato de nossos cálculos para Λ = −0, 01 apresentarem ainda menor precisão do que os
demais. Tivemos que limitar nossa análise devido a um comportamento instável da solução
que se manifestou a medida que η → η∗. Instabilidades numéricas presentes no formalismo
ADM são um fenômeno bem conhecido (WERNECK, 2020). Essas instabilidades também
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se manifestaram durante as tentativas de se analisar os sistemas dS, dessa forma não
foi possível fazer uso dessa versão de SFCollapse1D para análises rigorosas do fenômeno
crítico no espaço de Sitter.

Assim esperamos em trabalhos futuros aprimorar nossas análises com melhores
valores de δη e possivelmente fazer uso de um formalismo mais robusto como é o caso do
formalismo BSSN.
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4 Conclusão

Nesse trabalho apresentamos alguns resultados de nossos estudos em relatividade
numérica. Em particular, estudamos o colapso de campos escalares sem massa na presença
de uma constante cosmológica. Para que isso fosse possível, realizamos modificações no
programa SFCollapse1D. Em nossas simulações fomos capazes de analisar o fenômeno
crítico, característico de transições de fase, originalmente descoberto por Matthew Choptuik
(CHOPTUIK, 1993), e como esse é afetado pela presença de uma constante cosmológica
negativa. Constatamos que a presença de uma constante cosmológica negativa tende a
facilitar o colapso gravitacional, o que está de acordo com alguns resultados da literatura
(ZHANG et al., 2016). Além disso verificamos que no fenômeno crítico, a constante
cosmológica atua como um fator atenuante das oscilações observadas originalmente por
Choptuik, reduzindo a frequência de oscilação característica do fenômeno de echoing.
Entretanto, algumas limitações foram observadas em nossos estudos, que restringem
interpretações quantitativas mais rigorosas. Atribuímos essas limitações a dois fatores.
Primeiro, ao nosso uso de uma precisão restrita nas simulações, que foi adotada por
limitações de tempo e recursos computacionais. Em segundo lugar, pelo uso do formalismo
ADM, que apresenta algumas limitações intrínsecas no que tange à estabilidade do método.
Visamos contornar essas limitações e ampliar os casos analisados em trabalhos futuros,
estudando, por exemplo, modelos mais próximos da realidade física, usando fluidos de
fundo que possam afetar a formação de buracos negros.

O colapso gravitacional em um espaço AdS é relevante não somente pelas questões
pertinentes ao problema da constante cosmológica (WEINBERG, 1989) mas também
apresenta relevâncias em fenômenos de transição de fases pela correspondência AdS/CFT
(ARSIWALLA et al., 2011). Além disso, com os resultados mais recentes do LIGO (Laser
interferometer Gravitational-Wave Observatory) e VIRGO, e com os futuros resultados
de experimentos como o do interferômetro LISA, uma nova era de estudos de fenômenos
gravitacionais está por vir. Para a interpretação desses fenômenos, modelos teóricos e
computacionais mais robustos são necessários. O fenômeno de colapso possui relevância
também nesse tipo de fenômeno, tendo em vista que o colapso de massas em rotação pode
ser uma fonte importante de ondas gravitacionais.

Portanto, o estudo do fenômeno de colapso e das suas varias instanciações é uma
área de pesquisa promissora que ainda pode ser vastamente explorada.
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