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Resumo

FRANCISCO, L. P. Aplicagoes de relatividade numérica em sistemas em colapso
gravitacional. 2021. 51 p. Monografia (Trabalho de Graduagao de Engenharia Fisica) —

Escola de Engenharia de Lorena, Universidade de Sao Paulo, Lorena, 2021.

Nesse trabalho estudamos o fendomeno critico no colapso gravitacional de campos escalares
sem massa. Realizamos implementacoes em um programa C++ construido anteriormente
para a aplicacao do formalismo ADM na determinacao das condigoes de colapso gravitacio-
nal para um Ansatz com simetria esférica. Essas implementacoes permitem a generalizacao
das equagoes usadas no programa, possibilitando a analise desses mesmos sistemas na
presenca de uma constante cosmolégica. Validamos essas implementacoes, com base em
trabalhos anteriores, e calculamos algumas propriedades do fenémeno critico na presenca
da constante cosmoldgica, analisando algumas das influéncias causadas pela sua presenca

no colapso gravitacional de campos escalares.

Palavras-chave: Colapso gravitacional. Constante cosmoldgica. Buracos negros. Singula-
ridade.






Abstract

FRANCISCO, L. P. Applications of Numerical Relativity to systems in gravita-
tional collapse . 2021. 51 p. Monograph (Undergraduate Thesis in Engineering Physics)

— Engineering School of Lorena, University of Sao Paulo, Lorena, 2021.

In this work we study the gravitational collapse of massless scalar fields. We modify a pre-
existing C++ program previously build to apply the ADM formalism to the determination
of the conditions to trigger gravitational collapse from an Ansatz with spherical symmetry.
These modifications allow a generalization of the equations that are used in the program.
This makes possible the analysis of these systems in the presence of a cosmological constant.
We validate our implementation using previous works and calculate some properties of the
critical phenomena in the presence of a cosmological constant, analyzing some aspects of

its influence on the gravitational collapse of scalar fields.

Keywords: Gravitational collapse. Cosmological constant. Black holes. Singularity.
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1 Introducao

A teoria da relatividade geral foi proposta por Albert Einstein para permitir que
as leis e simetrias observadas na teoria da relatividade especial fossem aplicaveis quando
se leva em consideracgao a presenca de campos gravitacionais. A principal diferenca entre
as duas teorias esta no fato da teoria da relatividade especial assumir a existéncia de um
observador inercial universal, enquanto a relatividade geral, ao assumir que observadores
inerciais sdo somente locais (ALCUBIERRE, 2008), permite deduzir que objetos livres de
forcas externas nao se movem em caminhos necessariamente retilineos pelo espago-tempo,
mas seguem caminhos geodésicos que definem, entre outros, as orbitas dos astros. No
espago-tempo as geodésicas sao as curvas de comprimento extremal, o que sugere que o
espago-tempo nao é plano mas sim curvo. De certa forma, a curvatura do espaco-tempo
se manifesta com o que conhecemos como gravidade (TAYLOR; WHEELER, 2000). A
teoria geral da relatividade descreve como o espago-tempo se deforma na presenca de
matéria e energia através das chamadas equagoes de Einstein. O movimento dos corpos
pode entdo ser determinado, uma vez que se conhece a estrutura do espago-tempo (tensor
métrico), através de um outro conjunto de equagoes conhecidas como equagoes geodésicas.
Juntas estas equacOes permitem uma descricao geral de como intervalos de tempo e
comprimentos percorridos por diferentes corpos sao percebidos por diferentes observadores,
como particulas com ou sem massa se movem, e como a presenca de matéria e energia

afeta a estrutura do espaco-tempo.

Mesmo que as equagoes de Einstein sejam suficientes para determinar a forma do
espaco-tempo para uma dada distribuicao de matéria, poucas solugoes exatas para elas
sao conhecidas. O conjunto de equagoes diferenciais parciais nao lineares que compoe
essa teoria é de dificil solucdo. Muitas vezes a unica alternativa é fazer aproximagoes
em sistemas de alta simetria ou usar métodos numéricos para obter solu¢des numéricas
aproximadas. Um dos sistemas de interesse onde o uso de solu¢oes numéricas é necessario
sao os sistemas em colapso gravitacional, que lidam com situagoes onde uma distribuicao
de matéria pode evoluir ao ponto de formar ou ndo um buraco negro; e se ha a formacgao,

quais as propriedades desse buraco negro e as caracteristicas desse processo.

O fenomeno de colapso gravitacional possui diversos aspectos interessantes, nao so6
pelo entendimento a respeito do limiar de formagao do buraco negro, mas também, como
foi mostrado inicialmente nos trabalhos de Mattew Choptuik (CHOPTUIK, 1993), esse
fendmeno apresenta propriedades universais que sao analogas aquelas presentes nas mais
diversas formas de transicao de fases. Dessa forma, o entendimento dessas propriedades
pode demonstrar aplicagoes nao s6 na astronomia e cosmologia a partir de um entendimento

das propriedades da matéria e seu comportamento, mas também em outras areas através
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da correspondéncia AdS/CFT (ARSIWALLA et al., 2011).

Nesse trabalho, estudamos o fendmeno critico no colapso de campos escalares
na presenca de uma constante cosmoldgica. Para fazer isso, realizamos modifica¢oes no
programa SFCollapselD, desenvolvido para andlise do fenémeno de colapso. No capitulo a
seguir faremos uma revisao dos conceitos tedricos necessarios para a compreensao desse
fendmeno, assim como uma descricdo dos métodos numéricos usados nas simulagoes
realizadas com o programa SFCollapselD. No capitulo 3 descrevemos as modificagoes
realizadas no programa, e mostramos os resultados obtidos em duas situacoes distintas de
constante cosmolégica. Finalmente no capitulo 4 expomos as nossas conclusoes e problemas

em aberto que podem ser estudados com este mesmo programa.



15

?2 Revisao tedrica

2.1 A teoria da Relatividade Geral

2.1.1 O espaco-tempo

A teoria da Relatividade Geral ndo é uma apenas uma teoria da dindmica de
objetos no espaco-tempo, mas é também uma teoria que incorpora em sua descri¢ao as
caracteristicas da geometria do préprio espago-tempo e como este é afetado pela presenga
de matéria. A presenca de matéria e energia ocasiona a curvatura do espaco-tempo, e tal
noc¢ao de curvatura precisa ser descrita intrinsecamente, como veremos na segao 2.1.4,
sem recorrer as propriedades de um espago maior a partir do qual podemos observar o

espago-tempo se curvando.

Uma descrigao intrinseca da curvatura de um espaco pode ser feita observando-se o
comportamento de trajetérias nesse proprio espaco. Comentaremos mais detalhadamente
sobre isso na secao 2.1.4, mas podemos adiantar que o comportamento das trajetorias ao
percorrer a estrutura que define o espago-tempo é o mecanismo usado para inferir sua

geometria e curvatura.

As trajetérias que descrevem a linha de mundo'de um objeto sao descritas por curvas,
e tais curvas precisam ser continuas. Para descrever o espago-tempo e suas propriedades, é
necessario fazer uso de uma estrutura matematica capaz de abrigar curvas continuas, e

permitir a definicdo de operagoes capazes de analisar as propriedades dessas curvas.

A estrutura matematica mais simples que detém essas propriedades é a variedade.
Uma variedade é uma generalizacido do espaco R", trata-se de um espaco topolégico?,
que localmente pode ser confundido com R™(rigorosamente, dirfamos que existe um
homeomorfismo® local entre a variedade M e o espago R™). Essa correspondéncia local

com R", pode ser melhor visualizada na figura 1.

No espago-tempo, corpos nao possuem so trajetérias, possuem também velocidades.
Impomos, entdao, uma restricao a mais na variedade que define o espago-tempo, esta precisa
ser diferenciavel. Uma vez que o conceito de diferenciabilidade em principio estd definido
para fungoes f : R™ — R", é preciso que este seja generalizado para variedades, isso pode

ser feito garantindo que os mapas de transicdo das diferentes cartas sejam diferencidveis,

L O conjunto de todos os eventos na histéria de um objeto no espaco-tempo.

Um espaco topoldgico é a estrutura matematica mais simples necessaria para a defini¢do de continuidade.
Uma descrigdo mais clara pode ser encontrada em (MUNKRES, 2014).

Um homeomorfismo é um mapeamento entre dois conjuntos que preserva sua estrutura topoldgica
(MUNKRES, 2014).
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Fonte: Adaptado de (LEE, 2013)

Figura 1 — Sendo U um subconjunto de uma variedade, existe um mapeamento ¢, que
denominamos uma carta, estabelecendo uma correspondéncia entre a variedade
e o espaco R".

uma vez que esses serdo fungoes do tipo f : R" — R" (LEE, 2013).

Dado um ponto de uma variedade diferenciavel, por ele passam infinitas curvas,
cada uma delas, se diferenciavel, da origem a um vetor tangente, que representa o vetor
velocidade dessa curva. Todos os vetores que existem, tangentes a variedade em um ponto

p dao origem a um espaco tangente, denominado 7,M, que ilustramos na figura 2.

Fonte: Adaptado de (LEE, 2013)

4y

Figura 2 — Dada uma variedade M, em um ponto p passam infinitas curvas, a cada uma
delas podemos associar um vetor tangente v. O conjunto de todos os vetores
tangentes formam um espago vetorial, que denominamos 7, M.

A estrutura de espaco-vetorial presente nos diferentes espagos tangentes permite
a definicdo de operagoes, através dos tensores, que permitem analisar a geometria da

variedade.

Na teoria geral da relatividade, assumimos que o espago tempo pode ser modelado

por uma variedade diferenciavel pseudo-riemanniana M de 4 dimensoes, i.e., um espago
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topolégico localmente homeomérfico a R* 4. Em cada ponto p de M surge naturalmente
um espaco vetorial tangente T,M e seu dual Ty M. A existéncia de um espago vetorial em
cada ponto permite assumir que hé sobre M um campo vetorial (MISNER; THORNE;
WHEELER, 1970).

Um tensor do tipo (m,n) é um mapa multilinear 7 : Ty M x ... x TxM x T,M... x
T,M — R, onde o produto cartesiano é realizado m vezes em T7M e n vezes em T,M,
i.e., um tensor ¢ um mapeamento que associa m elementos de T;M e n elementos de
T,M a um nimero real. Dizemos que a ordem do tensor é m + n. Havendo sobre M um
campo vetorial, ha portanto, também um campo tensorial construido segundo o produto
cartesiano mencionado. Esse campo permite definir um tensor em cada ponto de M
(RENTELN, 2014).

As equagoes da relatividade geral sdo escritas a partir de grandezas tensoriais. Isso
garante que as equagoes satisfacam a propriedade de covariancia geral, i.e., as equagoes

mantém a sua forma mediante uma transformacao arbitraria de coordenadas.

2.1.2 O tensor métrico

Um tensor de muita importancia é o tensor métrico, de tipo (0,2), que define o
produto interno entre dois vetores no espaco tangente em um determinado ponto. Dados
dois vetores, temos que g(v,u) = u- v, para u,v € T,M . O produto interno também
permite determinar a norma de um vetor, e é o fato deste produto interno nao ser
estritamente positivo (o que define uma variedade pseudo-riemanniana em contraposigao a
uma variedade riemanniana) que permite a distingdo entre vetores nulos, tipo tempo e

tipo espaco.

Tratando-se de um tensor de ordem 2, as componentes do tensor métrico podem

ser expressas como uma matriz quadrada 4 x 4:

doo Yo1 Yoz Jo3s
gio 911 Yg12 913

Guv = s (2 . 1)
g20 G921 G22 G23

g3 931 Y932 9gs33

Um deslocamento infinitesimal ds no espago-tempo pode ser representado por um

vetor infinitesimalmente pequeno, cuja norma é entao:

ds® = g, datdz”. (2.2)

4 Usamos aqui R* para expressar o produto cartesiano R x R x R x R ou seja um conjunto de 4 ntimeros

que representam as coordenadas (z°, 21, 2%, #3). Mas ndo se trata do espaco euclidiano tradicional, e

sim do espaco de Minkowski.
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A equacgdo 2.2, por abuso de nomenclatura, ¢ muitas chamada de métrica do espago-
tempo, uma vez que é a medida de distancia infinitesimal, especifica para aquela geometria
espago-temporal. Além de uma nocao de distancia, o conceito de volume esta intimamente
ligado ao tensor métrico, em especial pela relacao (SCHUTZ, 2010) % =9,
onde o lado esquerdo da igualdade é o jacobiano de uma transformacao de coordenadas de
um sistema O para um sistema de coordenas O', e g é o determinante de 2.1. A partir
dessa relacao o tensor métrico pode ser usado para calcular volumes no espago-tempo, 7.e.,

o diferencial de volume em um sistema com coordenadas z* é igual a /—g dx*.

2.1.3 Derivadas covariantes

A métrica também possui grande importancia na definicdo de curvatura através da
conexao afim. Uma conexao afim é um objeto geométrico que conecta os diferentes espagos
tangentes. Existem varias conexoes possiveis para se escolher, mas por simplicidade e sem
perda de generalidade escolhe-se aquela que é livre de torcao °, essa conexdo é conhecida
como conexao de Levi-Civita. As componentes da conexao de Levi-Civita sdo expressas

pelos simbolos de Christoffel Fi\w e se relacionam ao tensor métrico pela equacao®:

1 o
F;AJ,V = 59 A(QU}L;V + Goviu — g;w;a)- (23)

Ao se derivar grandezas tensoriais, uma correcao precisa ser aplicada para garantir
que o objeto resultante seja covariante, i.e., transforma-se como um tensor. Essa correcao
é dada pelos simbolos de Christoffel. Ao se incorporar essa corre¢ao a derivada de uma
grandeza tensorial chamamos o objeto resultante de derivada covariante desse tensor. Dado

7

um vetor V' e um I-forma w * as suas respectivas derivadas covariantes sao:

AN RS V0 (2.4)

Vaw, = 0w, — 5, wy. (2.5)

A partir desses resultados, pode-se mostrar que para um tensor genérico do tipo
(m,n) a sua derivada covariante é obtida somando um simbolo de Christoffel para cada
indice contravariante e subtraindo para cada indice covariante. Como exemplo, consideremos

um tensor 7, assim teriamos:

VaTgu = OxTgu + 15 Ta = Do T — Do T

Torgao é uma forma matematica de se descrever como um espago tangente rotaciona ao longo de um
caminho. Entao escolhemos aquela conexao que nao apresenta tal rotacao .

O simbolo ; denota derivada covariante em relacao & coordenada que procede esse simbolo.
Respectivamente tensores de tipo (1,0) e (0,1).
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A insercao da correcao dada pelos simbolos de Christoffel pode ser interpretada
CcOmMoO uma correcao necessaria para se levar em consideracao a variagao da base do espago

tangente em uma variedade arbitraria.

2.1.4 Curvatura

Dizemos que um objeto possui curvatura intrinseca se caminhos anteriormente
paralelos, deixam de ser paralelos ao se percorrer a superficie desse objeto. A partir dessa
defini¢do intuitiva podemos inferir que a superficie de um cilindro nao é curvada mas a de

uma esfera possui curvatura. ®

Esse conceito pode ser formalizado matematicamente através da defini¢ao do tensor

de curvatura de Riemann.

Rga,uu = [vua vu] (26)

que nos da uma medida da nao comutatividade das derivadas covariantes em duas coordenas
distintas. Esse tensor pode ser calculado mais facilmente em termos dos simbolos de

Christoffel, assumindo a forma:

Raoz/uz = 8MF?/04 - aVFZa + PZ)\Fia - Pg)\l—‘/};a‘ (27>

Dada uma variedade Riemanniana (ou pseudo-riemanniana) o tensor de Riemann
nos indica a mudanga que ocorre nas componentes de um tensor quando ele é transportado
paralelamente em um caminho fechado. Se essa mudanca for nula, dizemos que essa

variedade nao possui curvatura intrinseca.

Em um espago de quatro dimensoes, o tensor de Riemann teria 256 componen-
tes”, entretanto essas componentes nao sao todas independentes. O tensor de Riemann
apresenta um determinado niimero de simetrias que reduz substancialmente a quantidade
de componentes independentes. Por construcao o tensor de Riemann é antisimétrico na
troca de seus dois tltimos indices, além disso apresenta outras simetrias que sao impostas
pela conexao afim. Dentre essas simetrias temos que o tensor também sera antissimétrico
na troca dos dois primeiros indices e invariante mediante a troca do primeiro par com
o segundo par de indices. Além disso a seguinte equacgao, conhecida como identidade de

Bianchi, é verdadeira '°(CARROLL, 2003):

Rpo,uy + Rp,uzza + sz/o,u =0. (28)

8 Basta considerar por exemplo que dois meridianos (sempre ortogonais ao equador e portanto paralelos)

sempre se encontram nos polos da esfera.
Terfamos 4* componentes distintas possiveis.

10 Aqui o fndice do tensor foi abaixado com o uso do tensor métrico Rpopw = gpaR%,, -

9
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Levando em conta todas as simetrias impostas, restam apenas 20 componentes
independentes. Ou seja, 20 fungoes que precisam ser especificadas para se determinar a

curvatura de uma variedade em cada ponto.

Embora possa ser vastamente simplificado pelas suas varias simetrias, o tensor de
Riemann ainda é um objeto dificil de se trabalhar. Um tensor mais simples de tratar e que
ainda contém informacao suficiente a respeito da curvatura do espaco tempo'!, oferecendo
uma descri¢do de como um diferencial de volume varia em cada direcdo do espago-tempo é
o tensor de Ricci. Ele é obtido a partir do tensor de Riemann pela operacao de contracao

entre o primeiro e o terceiro indice desse tensor.
_ ph
Rﬁa =R apfB - (29)

Podemos definir ainda o escalar de Ricci, que fornece uma medida da curvatura média da

variedade:

R=g"R,, . (2.10)

Em posse do tensor de Riemann, de Ricci, do tensor métrico e do escalar de Ricci

podemos agora introduzir as equagoes de Einstein.

2.1.5 Energia e matéria

Na teoria geral da relatividade, a curvatura do espago-tempo (quantificada nas
equagoes de Einstein pelo tensor e escalar de Ricci) é ocasionada pela presencga de matéria
e energia. No espaco-tempo quadridimensional, a distribuicao de matéria e energia pode
ser representada pelo tensor de energia-momento 7%, Onde T corresponde a densidade
de energia, T7° ao fluxo de energia, 7%/ (para j # 0 ) a pressao e os demais termos &
tensdo (MISNER; THORNE; WHEELER, 1970).

2.1.6 As equacdes de Einstein

Como em muitas as outras areas da fisica, as equagoes dindmicas podem ser obtidas
a partir do calculo variacional. Considerando-se uma ac¢ao que contém as variaveis escalares
de interesse do sistema, o ponto estacionario dessa acgao serd aquele que descreve as
equagoes dindmicas do sistema. Na Relatividade Geral essa agdo é conhecida como acao de
Einstein-Hilbert e possui sempre duas componentes. S = Sg + Sy com Sg sendo a parte

que descreve a gravitagao e Sy, os campos de matéria. Essa acao assume entao a forma:

Szlér/\/—_g]%d‘lx%—/ﬁ(gb)\/—_g 'z | (2.11)

1 Sendo dado pela contracdo do tensor de Riemann e sendo ainda um tensor simétrico, o tensor de Ricci
tem somente 10 componentes independentes.
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onde o primeiro termo contém a informagao pertinente as derivadas do tensor métrico

(contidas no escalar de Ricci) e o segundo termo expressa a densidade lagrangiana de

matéria no espago-tempo, e L(¢) é uma func¢ao do tipo de matéria. Considerando o tensor

métrico como variavel dindmica, esse funcional S[¢g"’] encontra seu ponto estacionério
quando a seguinte equacgao é satisfeita:

1

RM — ig“”R = 8nTH . (2.12)

A equacgao 2.12 é uma notagao compacta para 10 equagoes diferenciais distintas,

relacionando o tensor de curvatura de Ricci (R*), o tensor métrico (g"”), o escalar de

Ricci (R) e o tensor de energia-momento (7). Juntas essas equagoes sao conhecidas

como equagoes de Einstein e definem como o tensor métrico pode ser determinado a partir

de uma distribui¢do de matéria (tensor energia-momento).

2.1.7 A constante cosmoldgica

Logo apés completar o desenvolvimento da teoria da Relatividade Geral, Albert
Einstein tentou aplicar as suas recém obtidas equacgoes para modelar todo o universo.
Entretanto, o resultado obtido entrava em contradicao direta com a crenca filosofica vigente
na época de que o universo era estéatico e eterno (WEINBERG, 1989). A aplicagao direta
da equacao 2.12 revela um universo dinamico, nao constante, um resultado que Einstein
nao podia aceitar. Dessa forma, ele buscou formas de modificar as equagdes para que nao
fosse necessario abandonar a hipotese do universo estatico. A forma menos drastica de se
alterar as equacgoes para que uma solugao estatica fosse possivel era com a introdugao, no
lado esquerdo da equagao de um termo proporcional ao tensor métrico. As equagoes de
Einstein com constante cosmoldgica assumem a forma (MISNER; THORNE; WHEELER,
1970):

1
RM — Eg‘“’R + Agh” = 8xTH .

Esse novo conjunto de equagodes admitia uma solugdo estatica, entretanto, alguns
anos depois com as observagoes de Hubble referentes a expansao do universo, Einstein
abandonou a constante cosmoldgica, retornando a sua formulacao original para as equagoes

que levam o seu nome.

No contexto moderno da fisica tedrica e da cosmologia, a constante cosmoldgica
ressurge, sendo reinterpretada como a energia presente no vacuo, associada a uma compo-

nente do tensor de energia oriunda da polarizacao do vacuo, derivada da teoria quantica
de campos (SAHNI; KRASINSKI, 2008).

A presenca de uma constante cosmoldgica, que atua de certo modo como uma

componente do tensor de energia-momento, vai afetar a estrutura geométrica do espacgo-
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tempo. Se considerarmos que as outras fontes de energia (o tensor de energia-momento
T") sao nulas, obtemos como solugao das equagoes de Einstein um espago-tempo com
curvatura constante. Se A > 0 teremos um espaco de curvatura constante positiva, chamado
de espaco de Sitter (dS). Por outro lado, A < 0 vai dar origem a um espago-tempo de
curvatura constante negativa chamado de espa¢o Anti-De Sitter (AdS). Na presenca de
outras fontes de matéria, i.e, T*” # 0, como o que acontece quando temos um buraco negro
ou uma nuvem de matéria em determinada regiao do espaco, as solucoes das equagoes de
Einstein dardo origem a uma geometria mais complexa para o espago-tempo, entretanto
podemos dizer que suficientemente longe das fontes de matéria recuperamos as solugoes
dS ou AdS (dependendo do valor atribuido a constante cosmoldgica). Nesse caso, nos
referimos as solugbes como assintoticamente dS ou AdS (CALVO; GARRIGA, 2018).

No que se refere ao colapso gravitacional, a sua relacao com a constante cosmolbgica
é um campo de estudo ainda em desenvolvimento. Resultados como os de (ZHANG et
al., 2016) sugerem que o limiar de formagdo de um buraco negro tende a crescer com o
aumento da constante cosmoldgica em um espaco de Sitter, entretanto diferentes cendrios
com diferentes fontes de matéria, e como estas sao influenciadas pela presenca do termo

cosmolégico ainda precisam ser melhor investigados.

2.2 O formalismo 3+1

As equacoes de campo de Einstein nao fazem distin¢ao entre tempo e espaco.
Entretanto, é conveniente que se possa escrever as equagoes como variaveis espaciais
evoluindo no tempo, permitindo assim tratar o problema como um problema de Cauchy, ou
problema de valor inicial, onde podemos especificar as configuragdes do espago-tempo em
um instante inicial e usar os métodos numéricos tradicionais para resolucao de equagoes
diferenciais para entao determinar como as variaveis de interesse evolvem no tempo. Existe
mais de uma forma de se fazer essa separagao de espago e tempo (ALCUBIERRE, 2008).
Aqui optamos pelo uso do formalismo ADM, um dos mais tradicionais no campo de

relatividade numérica.

O formalismo ADM (ARNOWITT; DESER; MISNER, 2008) é um formalismo
Hamiltoniano para a relatividade geral, que foi desenvolvido inicialmente com o proposito
de enfatizar o aspecto de campo em vez do aspecto geométrico das equacoes de Einstein,
permitindo tratar a dindmica do campo gravitacional de forma a possibilitar uma quanti-
zacao (STANLEY DESER, 2008). Entretanto encontrou diversas aplicagoes, incluindo no

campo de relatividade numérica.

As aplicac¢oes do formalismo ADM em relatividade numérica vem de uma natu-
ral decomposigdo (3+1) necesséaria para a formulagio Hamiltoniana, que trabalha com

coordenadas generalizadas e momentos generalizados em um certo instante de tempo t.



2.2. O formalismo 3+1 23

Apresentamos aqui uma revisao do formalismo ADM, focada em suas aplica¢oes

em relatividade numérica.

2.2.1 A decomposicao 3+1 do espaco-tempo

Seja (M, g) uma variedade pseudo-Riemanniana equipada com uma métrica g.
Assumimos que existe um difeomorfismo'? entre M e R x X2, onde ¥ é um conjunto
de hipersuperficies de Cauchy'*. Efetivamente, estamos pensando no espaco-tempo como
composto por diversas 'fatias', onde cada uma delas é uma superficie de Cauchy, dada
por uma superficie de nivel de uma funcao escalar ¢, interpretada aqui como uma medida
universal de tempo'®. O fatiamento ¢ feito de tal forma que todas as hipersuperficies
sao do tipo espaco ', dessa forma o vetor normal a hipersuperficie n® ¢ do tipo tempo,

como ilustra a figura 3.

Fonte: Adaptado de (BAUMGARTE; SHAPIRO, 2010)

}!ﬂ

M

Lok

[}

Figura 3 — Fatiamento do espago-tempo (variedade M) em hipersuperficies tipo-espago .
n® é um vetor futuro tipo tempo.

Consideremos o 1-forma Vt, associado as superficies de nivel da funcao t. Sua

norma calculada através do tensor métrico é:

1

9Vt == (2.13)

onde « é chamado de funcao lapso, uma medida da quantidade de tempo proprio entre

duas hipersuperficies. Em termos da fung¢ao lapso, o vetor normal a hipersuperficie pode

12
13

Um difeomorfismo é uma relacao de equivaléncia entre duas variedades diferencidveis.

A existéncia desse difeomorfismo pode sempre ser assumida se M é uma variedade globalmente
hiperbdlica (BERNAL; SANCHEZ, 2003).

Uma superficie de Cauchy é o conjunto de pontos do espago em um instante de tempo fixo t.

Esse tempo nio ¢ o tempo préprio medido por nenhum observador fisico. E o tempo de um observador te6-
rico movendo-se ortogonalmente & hipersuperficie, conhecido como observador euleriano(ALCUBIERRE,
2008).

Isso significa que a assinatura da métrica definida sobre essa superficie é (+,+,+) (DANIELI, 2018).

14
15

16
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ser escrito como:

nt = —avVet . (2.14)

O vetor unitario normal a hipersuperficie, permite definir o operador de projegao:

P! =68 +nfn, . (2.15)

Esse operador projecao permite projetar os tensores do espago-tempo nas superficies

espaciais. Aplicando esse operador na métrica g obtemos a métrica espacial:

PﬁPfgag = (6, + nanu)(éf +1°1,) gap
= (5555 + 5ﬁ“nﬂny + n"‘nuch + nanunﬂny)galg
= Guv + Guan 1y + NNy Gay + nanyunn,
= Guv Ty + 00y — NNy,

= G + nuny

Definimos entao a métrica espacial:
Y = Guv + n,ny, . (216)

Trata-se de um objeto puramente espacial que reside completamente na hipersu-

perficie 2.

2.2.2 Curvatura Extrinseca

Anteriormente discutimos sobre como a superficie de um cilindro nao possui
curvatura intrinseca. Isso porque ao se transportar paralelamente vetores sobre a superficie
de um cilindro estes ndo mudam sua orientacao relativa, diferentemente do que ocorre na
superficie de uma esfera. Assim, dizemos que nao ha curvatura intrinseca no cilindro e
o tensor de curvatura de Riemann é identicamente nulo. Entretanto é intuitivo de que
diferentemente de um plano, um cilindro é uma superficie curva, essa curvatura s6 nao
é intrinseca da geometria do objeto (nao seria percebida por observadores que habitam
a superficie do cilindro) mas é um artefato de como a superficie do cilindro estd imersa
em um espaco de maior dimensionalidade. Geralmente essa curvatura nao é importante
para as equacoes de Einstein pois trabalhando-se com uma variedade de n dimensoes, a
curvatura extrinseca seria um artefato de como essa variedade esta imersa em um espaco

de dimensao n + 1.

Entretanto, quando fazemos a decomposigdo (3 + 1) das equagdes de Einstein,

passamos a justamente analisar como um conjunto de hipersuperficies tipo-espaco estao
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imersas em um espago-tempo. Nesse contexto a curvatura extrinseca das superficies torna-se

um atributo importante da decomposigao (3 + 1).

A curvatura extrinseca pode ser definida como a projecao na superficie espacial da

mudanca do vetor normal a superficie quando este é paralelamente transportado.

Fonte: Adaptado de (BAUMGARTE; SHAPIRO, 2010)

Figura 4 — Mudanca na direcao do vetor normal n® ao longo da superficie. A projecao de
on® sobre a superficie espacial nos da a curvatura extrinseca.

Segundo essa definigdo, matematicamente podemos escrever (ALCUBIERRE, 2008):

Ky =—PVan, . (2.17)

O que deixa claro que o tensor K, ¢ puramente espacial uma vez que ¢ resultado
da aplicagdo do operador de projecao. Equivalentemente a essa definicao, podemos definir

a curvatura extrinseca em termos da derivada de Lie'” da métrica espacial:

KMV = —*fn’}//“, (218)

2.2.3 As equacdes ADM

Até aqui, tudo que fizemos foi definir um conjunto de ferramentas que nos permitem
descrever o comportamento de uma superficie espacial oriunda da decomposicao do
espago-tempo. Vimos como o espago-tempo decomposto pode ser entendido em termos de
grandezas como a curvatura extrinseca, a métrica espacial e a funcao lapso. Entretanto, nao
especificamos quais propriedades cada uma dessas superficies espaciais precisam satisfazer
e como a evolugao temporal destas superficies se da. Para isso precisamos das equacoes de

Einstein.

17 A derivada de Lie mede a variacdo de um campo tensorial ao longo de um campo vetorial, nesse caso
tratamos da variagdo de ;; ao longo de n® .
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O primeiro passo é decompor os objetos presentes em 2.12 em suas componentes
espaciais e temporais. Isso vai nos dar um conjunto de quatro equagodes que determinam as
condigoes que as varidveis (curvatura extrinseca e métrica espacial) precisam satisfazer em
cada superficie espacial, e como essas variaveis evoluem com um passo temporal. Formando

assim, duas equagoes de restricao e duas equagoes de evolugao.

2.2.3.1 As equacdes de Restricao

Comecamos com a decomposicao do tensor de Riemann. Devido as suas simetrias
existem 3 possiveis projecoes deste tensor que nao sao identicamente nulas. A projecao
completa de R*,__; A projecao de R, . com um de seus indices projetados na direcao

VoK)

normal e a projecao de R, com dois dos seus indices projetados na dire¢ao normal

(BAUMGARTE; SHAPIRO, 2010).

A relagdo da projecao totalmente espacial do tensor de curvatura de Riemann em
4 dimensoes e da sua contraparte na hipersuperficie tridimensional precisa satisfazer a

chamada equacao de Gauss:
Rapea + KacKoa — Kaaley = Py PY PP YRy, (2.19)

onde Rg.q € 0 tensor de curvatura tridimensional, na superficie espacial construido a partir

de Yap- A contracio de 2.19 com ¢*¢% resulta em:

nn’Gy = OR+ K? — K K™ .

Substituindo Gy, = 87Ty, e definindo p = n*n’T,;, obtemos finalmente uma das 4

equagoes que determinam o formalismo ADM, a chamada Restricao Hamiltoniana:

H= OR+ K>~ KK —16mp =0 (2.20)

A segunda projecao do tensor de Riemann de interesse, ¢ aquela obtida ao se

projetar um dos indices na dire¢ao normal.

Pcfplgpcrns (4)qurs = DbKac - DaKbc . (2.21)

Novamente, contraindo com ¢g*g*® obtemos a equacdo de Codazzi:

PnGhe = Dy(v"* K — K K™) . (2.22)
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118

onde D; representa a derivada covariante espacial '°, induzida pela métrica v4,. Definindo

a densidade de momento como S, = —yIn®T,, e substituindo o tensor de Einstein:

M, =DyK! -~ D,K —87S, =0]. (2.23)

A Equacao 2.23 é a chamada equagao de restricdo do momento. Tanto 2.20 quanto
2.23 sao equagoes que devem ser satisfeitas em cada instante de tempo, 7.e., em cada
superficie espacial, respeitando assim as equagoes de Einstein. Elas representam as equagoes

de restrigao do formalismo ADM.

2.2.3.2 As equacoes de evolucao

Vamos agora deduzir as equagoes que determinam os valores das variaveis de
interesse no instante (¢ + At) conhecendo-se elas no instante ¢. Primeiramente, precisamos
notar que com base na equacao 2.14 o vetor normal n® nao possui produto unitario com o
1-forma que define as superficies espaciais. Sendo eles nao duais, ao fazer uma translagao
normal & superficie X(¢) para a superficie (¢ + At) ndo temos garantia de que estaremos
ainda no mesmo ponto. Introduzimos entdo um vetor espacial 3 para garantir que as
nossas translagoes temporais nos levem sempre para o mesmo ponto, como mostra a figura

d.

Fonte: Adaptado de (ALCUBIERRE, 2008)

normal line
L\

coordinate line

x! — Bidt t+dt

o dt

Figura 5 — Acao do vetor de translagao na superficie espacial, garantindo que a analise
seja sempre feita sobre o mesmo ponto.

Passamos entdo a considerar a variavel tempo escrita em termos da func¢ao lapso «
e do vetor de translagao [:
t* =an® + (2.24)

18 Que nada mais é do que a projecdo na superficie da derivada covariante com que estamos acostumados:
D; = PV, .
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onde a funcao « e as 3 componentes do vetor 3¢ sao escolhas arbitrarias que carregam a
selecao de coordenadas presentes nas equagoes de Einstein. Assim, sdo variaveis de calibre

livremente especificadas.

A partir de 2.18, que serve como uma definicdo da curvatura extrinseca, podemos,

considerando 2.24, escrever:

_2Kab = °€n7ab

= £ “
(%t—éﬂ)f}/ b
1 1

= **’{Jt’yab - 7£ﬂ’7ab
(6% «

Podemos entao concluir que:

£t’7ab = —20[Kab + fﬂ’yab . (2.25)

A equacao 2.25 é uma das duas equacoes de evolucdo que estamos interessados,

representando a evolugao temporal da métrica espacial 7.

Antes de obtermos a tltima equagao de evolucao, retornemos as projecoes do tensor
de Riemann na superficie espacial. A ultima projecao de interesse é aquela obtida quando
dois dos seus indices sao projetados na diregdo normal. A partir dessa proje¢ao obtemos a

equagao de Ricci:

1
LnKap = ndnCPC?PbTM)Rdrcq — —DyDyar — Ky Ko - (226)
«

A equacgdo de Ricci nos permite obter a derivada de Lie da curvatura extrinseca ao
longo do vetor normal n*. Usando o vetor temporal definido em 2.24, a derivada de Lie da

curvatura extrinseca ao longo desse vetor é:

£tKab == Oéanab —+ £BKab y (227)

onde podemos substituir a derivada de Lie ao longo de n® pela sua expressao obtida a
partir da equacao de Ricci 2.26. Além disso podemos usar a equacao de Gauss 2.19 para
substituir as projegdes do tensor de Riemann para obter (BAUMGARTE; SHAPIRO,
2010):

LKy = =D Dy + a( Ry — 2K K + KKyp)

1
— 87TO£(Sab — 5"}/(11,(5 — p)) + £5Kab , (228)

onde Sy, = PcfPlfchd e S = 5% A equagao 2.28 permite determinar a evolugao temporal

da curvatura extrinseca.
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As quatro equagdes que obtivemos representam a decomposicao das equagoes de
Einstein no formalismo (3 + 1). Temos duas equagoes de restri¢do (restrigio de momento e
Hamiltoniano) e duas equagdes de evolugao (para a métrica espacial e para a curvatura
extrinseca), em posse delas podemos tratar o problema de resolver as equagoes de Einstein
como um problema de Cauchy, especificando um conjunto de dados no instante inicial e

evoluindo a partir das equacgoes 2.25 e 2.28.

2.2.3.3 A escolha de um sistema de coordenadas

O desenvolvimento matematico até este ponto foi feito sem se considerar nenhum
sistema de coordenadas especifico, agora escolhemos um sistema de coordenadas onde
escrever as equagoes ADM. Escolhemos um conjunto de 3 vetores espaciais normais a

direcdo temporal, que residem na superficie espacial, logo, satisfazendo:

onde i = {1,2,3}. Esses vetores se movem de uma superficie espacial para a préxima
seguindo a direcao t*. Assim, escolhemos:

€ =t" = (1,0,0,0) . (2.29)

Em termos do vetor normal n® e sua correspondente contraparte covariante, temos

que:

a 1 a
Vate(i) = —anae(i) s

onde vemos que as componentes espaciais do vetor normal covariante precisam ser nulas.
Considerando que a contracao de vetores espaciais com o vetor normal precisa ser zero, a

componente efy, de todos os vetores espaciais precisa ser zero. Em especial, temos:

B = (0,5 .

Podemos entao reescrever n® em termos de « e § usando 2.24, obtendo:

n = (1,—Bi> . (2.30)

A condigao de normalizacao n*n, = —1 permite obter a contraparte covariante do

vetor normal:

ne = (—a,0,0,0) .
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A partir da equagao 2.16 também podemos reescrever o tensor métrico em termos

das variaveis a e 5*. Temos que :

Levando em consideracao que as componentes espaciais de um tensor covariante

precisam se anular, obtemos:

ab __ —1/C¥2 Bi/QQ
T T\ B2 yi—ppija)

onde podemos obter a correspondente forma covariante invertendo a matriz:

o (—a2 + B8 51') . (2.31)
B Yij

Podemos entao reescrever o elemento diferencial de linha do espaco-tempo em termos das

variaveis do formalismo ADM, obtendo:

ds® = (—a® + B,8))dt? + 2B;da’ dt + vida'da? (2.32)

Particularizando ainda mais nosso sistema de coordenadas, podemos assumir um

sistema de coordenadas com simetria esférica, onde a métrica espacial assume a forma:

a? 0 0
=1 0 b2 0 : (2.33)
0 0 b*r%sin?4

onde a e b sdo parametros dimensionais que podem se modificar alterando o dimensiona-

mento do espaco-tempo.

Nessas condigoes o elemento diferencial de linha do espago-tempo assume a forma:

ds* = —a?(r,t)dt* + a*(r, t)dr? + r*(df* + sin® 0dp?) . (2.34)

A escolha de um sistema de coordenadas permite simplificar alguns termos das

equagoes ADM obtidas anteriormente, podemos escrever entao:

@R+ K* - K;; K7 = 167p|, (2.35)

DK} — D;K = 8nS;|, (2.36)
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0, K5 = B'O K + Ku0; ' + K;u0;8' — DiDjcx

(2.38)

Ovij = —2aK; + Diff; + D5

que sao as equagoes que efetivamente substituem as equagoes de Einsten, permitindo tratar
a evolucao do espago-tempo como um problema de valor inicial. Com isso, concluimos

nossa descricao do espago-tempo e das equacodes de Einstein em termos do formalismo

(3+1).

2.3 Sistemas em colapso gravitacional

A teoria classica de relatividade nos diz que para uma estrela de massa suficiente-
mente grande, acima do chamado limite de Tolman-Oppenheimer—Volkoff !, nao hé outro
destino possivel para a evolucao dela a nao ser o colapso em um buraco negro (MISNER;
THORNE; WHEELER, 1970). A formagao de buracos negros a partir do colapso gravitaci-
onal é um fenémeno comum no universo. Os primeiros trabalhos a investigar esse fendmeno
do ponto de vista da relatividade numérica foram os trabalhos de Mathew Choptuik
(CHOPTUIK, 1993). Ele foi capaz de observar que um campo escalar (representando uma
distribuicao de energia no espago-tempo) poderia colapsar formando uma singularidade em
condigoes especificas. Esse colapso era funcao da amplitude n desse campo. Para n > n*
ocorre a formacao de um buraco negro, porém para n < n* o campo escalar se dispersa
completamente; esse comportamento caracteriza o chamado fené6meno critico, onde um
comportamento ou propriedade de um sistema apresenta padroes universais caracteristicos
de uma transicao de fase que sdo independentes de muitas variaveis do sistema. Tratando-se
do colapso de campos escalares, Choptuik observou que o comportamento do sistema
seguia uma lei exponencial caracteristica de varios fendmenos de transicao de fases, onde a

massa do buraco negro préximo do ponto critico obedece a relagao:

Mpy = |n—n.]7, (2.39)

onde v é um escalar®® universal?’. Choptuik concluiu que v &~ 0,37, esses resultados

foram posteriormente confirmados por outros métodos, como métodos perturbativos

(GUNDLACH, 1997; MARTIN-GARCIA; GUNDLACH, 1999) .

19 Esse limite equivale a aproximadamente duas vezes a massa do Sol.

20 Usamos 7 por se tratar de uma notacio padrao. Nao hé relacio direta com a métrica espacial do
formalismo ADM.

v é universal no sentido de ser o mesmo valor, independente das condigoes iniciais do sistema quando
a mesma fonte de matéria é considerada. Portanto, o valor de v obtido por Choptuik deveria ser o
mesmo para campos escalares sem massa, independente de outras propriedades inferidas durante os
calculos.

21
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Além do comportamento critico proximo ao valor de amplitude 7,, também existe
uma periodicidade no comportamento da solugao, que pode ser observada em intervalos
espago-temporais muito menores. Para observar tal periodicidade é conveniente analisar
as variaveis do sistema em sua forma logaritmica. Como exemplo, podemos analisar o
tempo préprio logaritmico A = In(7, — 7)*, assim como fez Choptuik, e constatar que o
comportamento do campo escalar apresenta uma periodicidade, repetindo-se em A+ A, com
A = 3,43, porem com uma escala e® ~ 30 vezes menor. Essa periodicidade ¢ conhecida
como echoing e A, denominado periodo de eco, que também é uma grandeza universal
para o tipo de matéria estudada. As propriedades do fend6meno critico referentes ao echoing
também foram replicados por métodos semi-analiticos (MARTfN—GARCfA; GUNDLACH,

2003).

Com o advento de métodos mais refinados e recursos computacionais mais pode-
rosos, e com o uso de outros métodos, como métodos semi-analiticos, a lei exponencial
descoberta por Choptuik (equagao 2.39) foi modificada para melhor adequagao com os
dados. Atualmente, os resultados sugerem (GUNDLACH, 1997):

lnMBH:C+'71n‘77_77*|+f(ln|77_77*|) ) (2-40)

onde f é uma funcao peridédica com frequéncia angular:

Ay

~ (2.41)

w

A lei 2.40 é aplicavel a varias grandezas, ndo somente a massa. Na verdade, qualquer

grandeza () com dimensao de comprimento ¢ obedece a lei:

Trabalhando no regime subcritico, como optamos por fazer nesse trabalho, nao
podemos analisar a massa do buraco negro, tendo em vista que esse nao ird se formar,
mas podemos substituir a massa pela densidade energética p (a ser definida na préxima

se¢ao) no ponto central (r = 0) e esperamos o mesmo comportamento de 2.42, i.e?.:

In pet = C —2vIn|n — | + f(In|n —n.) . (2.43)

Com base em (BAUMGARTE, 2018) assumimos que a fungao f tem a forma:

f(z) = Asin(wx + ¢y) , (2.44)
Com frequéncia: A
™
= —. 2.4
w="2 (2.45)

22 Onde ., chamado tempo de acumulacio, é a medida de tempo préprio necessaria para estabelecer o
colapso ou dispersao do campo escalar.
23 Para o caso da densidade de energia que tem dimensio L2, { = —2.
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Além disso, conjectura-se que a partir de A e v podemos obter uma outra constante
universal, cujo valor deve ser (HOD; PIRAN, 1997):

T==r406. (2.46)

2.3.1 Campos escalares

A evolugao de um campo escalar 1) sem massa é descrita pela equacao de Klein-

Gordon (CHIRENTI, 2017):

L (g v=g0,0) =0, (2.47)

]

O campo escalar pode ser acoplado ao campo gravitacional através de uma densidade
lagrangiana:

£(6) = —;gwaﬂwﬂp | (2.48)

Variando a acao 2.11 recuperamos as equagoes de Einstein e a equacao de Klein-Gordon,

que podem ser colocadas na forma:

0,0 = ar<‘;‘n> , (2.49)
1 e
@H = ﬁ& (T a\Ij> s (250)
onde usamos as variaveis auxiliares:
_ B a(t,r)
U(t,r)=0(t,r), I(t,r) = a(t,r)atw(t’r) , (2.51)

com o Ansatz 2.34 para a métrica. Variando a agdo podemos também obter o tensor

energia—momento para um calmmpo escalar, equivalente a
1
T;ﬁy - 8uwal/w - §g;wao/’7baaw . (252)

Segue que a densidade energética definida para o formalismo ADM sera?:

U2 4+ 12

— (2.53)

p= n“n”T:ﬁ, =

A escolha de um calibre com simetria esférica 2.34 implica que K = K. Assim, a

restricao do Hamiltoniano se torna:

H= R —16mp, (2.54)

x 112 (0,t)+¥2(0,t
gle?ltral = p(07t) = W'

24 Por consequéncia, p
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a qual, com o escalar de Ricci:

4 /0.a a®—1
<®R::(T ) 2.5
T ) (2.55)

se torna:

oa a®>—1

=27 (1% + U?) | (2.56)

a 2r

sendo essa uma das equagoes de restricdo para o sistema de equacgoes de um campo escalar
no formalismo ADM. Outra equagao importante é obtida observando-se que para o calibre

escolhido K =0 = K(f, por consequéncia 0; Ky = 0 e, a partir de 2.38, obtemos:

=0 (2.57)

2.4 Métodos numéricos para solucao de equacdes diferenciais

Para resolucao numérica das equagoes diferenciais, sdo necessarios métodos es-
pecificos que permitem trabalhar com fungoes de natureza continua em um dominio
computacional discreto. Ha varios métodos para resolugao de equagoes diferenciais, entre-
tanto para se trabalhar com equagoes diferenciais parciais e seus respectivos sistemas, ¢
comum o emprego dos métodos de diferengas finitas (LI; QIAO; TANG, 2018).

Esse método consiste em aplicar uma aproximagao a grandezas continuas, como
derivadas e fungoes. Para as derivadas podemos assumir que um diferencial é representado
por uma diferenca discreta. Isso pode ser feito através da teoria de expansao em série de

Taylor, onde uma fungao f(x) pode ser escrita como
h2
fla+h) = f@@) + hf'(x) + 5 (@) + e

Podemos entao, através de uma aproximagao (desconsiderando termos de ordem

maior ou igual a 2), usar:

Py = LD =10

obviamente, ao fazer tal aproximacgao estamos inserindo um erro nos nossos célculos.

Entretanto, esse erro pode ser reduzido considerando aproximagoes de ordem superior
para as derivadas, por exemplo, podemos escrever:

(e +h) +3f(x) — 6f(x — h) + flx — 21)

(a) ! ,

que é uma aproximacao de terceira ordem para f’(x). Aproximagoes mais precisas, de ordem
maior podem ser obtidas a partir da expansao da série de Taylor em ordens superiores e da
substituicao dos diferentes termos. O método de diferencas finitas transforma o problema

de se resolver uma equacao (ou sistema de equagoes) diferencial(ais) em um problema onde
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se deve resolver uma equagao (ou sistema de equagoes) algébrica(s). Para a resolugao desse
sistema outros métodos numéricos podem ser necessarios, como o método da bisse¢ao ou

método de Newton (LI; QIAO; TANG, 2018).

As equagbes que estamos interessados em resolver nesse trabalho formam o sistema
de equagoes de Einstein-Klein-Gordon no formalismo ADM, composto pelas equagoes 2.49,

2.50, 2.56 e 2.57. Discretizando (reescrevendo as equagdes como diferengas finitas) até a

segunda ordem, obtemos?’:
gt gt 1 [a? ol
j i Rty y (R el N 4 ] 2.58
2At 2Ar Lafy, g+ ay_y -1 (2.58)
et — et 3 o o
) i 2 Ytipm 2 Qi ] 2.59
N o, — 17, Tj+1 ar j+1 — T a, j—1 ( )
A A exp{ (A} — A7)} -1
Ar 2Tj+1/2
1 n+1 n+1 2 1 n+1 n+1 2
2mrgap{ [ (v v+ [S(mH w0 e
oGt —af L a’.‘+1){ Lo @™ i)l e = o) } — 0 (2.61)
2ATr AN J Tjt+1/2 AT(@?H + a?ill)

Para esse sistema de equagoes a estabilidade é garantida contanto que a condicao

de Courant-Friedrichs-Lewy (COURANT; FRIEDRICHS; LEWY, 1967) seja satisfeita:

At
= — < .
C=3 <1 (2.62)

2 Representamos as equagoes para um ponto espacial j em um instante de tempo n .
26 Em nossa implementacdo, tomamos o ntimero C' = 0,5 .
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3 Resultados

3.1 SFCollapselD

Nossos estudos em colapso gravitacional foram feitos com base no programa SF-
collapselD (WERNECK et al., 2021). Trata-se de um codigo desenvolvido usando-se
o formalismo ADM, especifico para trabalho com campos escalares em um sistema de
coordenadas esférico. O codigo utiliza o método das diferencas finitas de segunda ordem

para resolucao das equagoes diferenciais parciais.

SFCollapselD apresenta um recurso extra que torna os calculos mais eficientes e

possiveis de serem realizados em sistemas computacionais de menor escala. Com o uso da
seguinte transformagao de coordenadas (RUCHLIN; ETIENNE; BAUMGARTE, 2018):

sinh (£)
sinh (+) ’

onde 7. Tepresenta a extensao do dominio da grade numérica, w é um parametro a

(3.1)

" = Tmaz

gl=g I

ser especificado que define a densidade de pontos préoximo da origem. Com esse sistema
de coordenadas é possivel definir uma amostragem uniforme para = € [0, 1], que serd
transformada em uma amostragem nao uniforme em r, obtendo uma maior densidade de
pontos proximo a origem, onde uma maior resolucao é necessaria devido as distorgoes do
espago-tempo. O uso desse sistema de coordenadas contorna a necessidade de se utilizar
os métodos AMR (Adaptative Mesh Refinement) (CHOPTUIK, 2000; HERN, 2000).

Para a execugao do programa é necessario se especificar as configuracoes da grade
numérica que descreve a discretizagao do espaco-tempo. Nos nossos calculos, sempre consi-
deramos os valores N, = 320, ry.c = 16, w = 0, 08. Tais valores, ja foram anteriormente
utilizados para replicar com alta precisao os resultados que caracterizam o fenémeno critico

no colapso de campos escalares sem massa (WERNECK, 2020).

A rotina utilizada pelo programa para a determinacao do colapso gravitacional,
se baseia no fato de que a fungao lapso a mede o intervalo de tempo préprio entre duas
superficies espaciais. Se o — 0 proximo da origem do sistema de coordenadas, assumimos

a formagao de uma singularidade e o colapso do campo escalar em questao.

Para determinar o valor da amplitude critica para o campo escalar, 7, na equacao
2.39, executamos SFCollapselD para diferentes valores de amplitude n . Mantemos um

registro dos valores de amplitude que definem ou nao colapso, e usamos uma rotina de

L Para as configuracdes de grade j especificadas, os valores de n utilizados variam de 0,3 até 0,5, e o

campo critico sempre tende a estar entre esses dois valores.
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bissecao para delimitar com precisao cada vez maior o intervalo onde o valor da amplitude

critica estd localizada. Como medida de precisao usamos o erro:

Ntorte — TMfraco
on=-———
Tfraco
onde 7gorte corresponde a amplitude do campo escalar que ocasiona colapso gravitacional,

, (3.2)

€ NMiaco aquela que gera dispersao do campo escalar.

Nas nossas andlises refinamos os cdlculos até dn ~ 10~°, o que muito provavelmente
foi um dos fatores limitantes que nao nos permitiu obter valores tao préximos como os da

literatura. Resultados anteriores capazes de replicar as grandezas obtidas por Choptuik
(WERNECK, 2020) fizeram o refinamento de dn até 10713,

Como mencionado, o critério para determinacao do colapso do campo escalar é a
analise da funcao lapso o na origem do sistema de coordenadas. No programa SFcollapselD
esse resultado ¢ anotado em cada passo iterativo no processo da solucao das equagoes

diferenciais por diferengas finitas.

Em uma situagao onde o colapso é observado, o comportamento tipico da funcao

lapso no ponto central é mostrado na figura 6.

Fonte: O Autor.

0.12

0.10

0.08

0.06

alpha (0,1)

0.04

0.02

0.00

t

Figura 6 — Valor da func¢ao lapso no ponto central, em um caso de colapso do campo
escalar.

Quando ocorre a dispersao do campo escalar o comportamento da funcao lapso é

tender ao valor unitario, como demonstra a figura 7.
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Fonte: O Autor.

rTrrrrer
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alpha (0,t)
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Figura 7 — Valor da funcao lapso no ponto central, em um caso de dispersao do campo
escalar.

3.2 Fendémeno Critico de Campos Escalares no Espaco Plano

Uma vez determinado o valor de 7, com a precisao desejada, realizamos diversas
execugoes no regime subcritico (7 < 7,), em cada uma delas registramos os valores de 7 e
os valores da densidade energética no ponto central p(0,t), calculadas a partir dos valores
de I, ¥ e a, que sao obtidos em cada instante de tempo por SFcollapselD no processo de

resolucao do programa.

max
central

Primeiro, consideramos apenas a componente linear da equacao 2.43 e realizamos um ajuste

Em posse dos valores de n e de p realizamos um ajuste numérico em duas etapas.

max

X o1 como variavel dependente. As

com os valores de 1 como varidvel independente e p
varidveis 7,, v e C sao parametros a serem especificados pelo ajuste?. Ou seja, realizamos

um ajuste linear em:

Inpia =C—2yIn|np—n,. (3.3)

central

Obtemos entdao uma reta que melhor se ajusta aos dados a partir de valores de 7,

~v e C. Representamos esse resultado na figura 8.

Com os valores obtidos para 7, 7 e C, fazemos um segundo ajuste, onde a nossa

2 Para a realizacdo do ajuste usamos a biblioteca SciPy (VIRTANEN et al., 2020).
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Fonte: O Autor.

° — fit linear
® Dados do SFcollapselD

-14 -12 -10 -8 -6 —4 -2
Injn = n:|

Figura 8 — Ajuste linear para os dados de z = In p225 | em fungdo de In|n — n,|

varidvel independente passa a ser In | — n,| e nossa variavel dependente é:

In peertia — C 4+ 2vIn|n — 0. ,

central

ou seja, estamos subtraindo dos valores p2aX

X a1 & componente linear que determinamos,

fazendo com que nossa variavel dependente passe a ser somente a componente oscilatoria

dos dados. Realizamos entdo um ajuste com a fungao:
f(z) = Asin(wx + ¢y) , (3.4)

com z = In|n — n.|. Com esse segundo ajuste determinamos os pardmetros w, A e ¢y.
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Na figura 9 mostramos o resultado final do ajuste da fungao 2.43 nos dados obtidos

a partir de SFcollapselD. Através desse procedimento obtivemos os valores dos parametros

Fonte: O Autor.

— fit

@ Dados do SFcollapselD

Figura 9 — Ajuste final para os dados de z = In p22% ' em fungao de In [ — n.|.

central

ajustados, mostrados na tabela 1.

Fonte: O Autor.

Parametro | Valor encontrado
Nx 0, 336425
C —3,396793
¥ 0,408158
A 0,274121
w 1,408357
oo 2,219645

Tabela 1 — Resultados obtidos para o fenémeno critico no espago plano.

Calculamos também os valores para A e T', o periodo de oscilagao universal. Obtivemos A =
3,641876 e T' = 4,461359, resultados razoavelmente préximos aos da literatura (T = 4,6 e
A = 3,43). Esses resultados sugerem que mesmo com o uso de precisoes inferiores do que
o estado da arte da literatura, fomos capazes de observar o comportamento critico. Assim
nossos resultados para sistemas com a constante cosmologica, os quais apresentaremos a
seguir, podem ser usados nao s6 qualitativamente mas também quantitativamente para se
mapear a influéncia da constante cosmoldgica no fenémeno critico no colapso de campos

escalares.
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3.3 Colapso de campos escalares na presenca de uma constante

cosmoldgica

Para considerar os efeitos causados pela presenca de uma constante cosmoldgica
devemos retornar a acao de Einstein-Hilbert com o termo de Klein-Gordon, dessa vez

consideramos a agao:

5= [ vyl (R—20) - 590,00, (3.5)

Aplicando os principios do célculo variacional e seguindo um procedimento semelhante

com aquele da secao 2.3.1 chegamos nas seguintes equacoes:

0,0 = 0, <ZH) , (3.6)
1 e
8tH = ﬁar (7" a\I’) s (37)

da a*(l1—Ar?)—1
+
a 2r

= 27mr (112 + U?) | (3.8)

O Oa  a*(1-Ar?) -1
o a r

=0, (3.9)

Assim, discretizamos essas equagoes, seguindo o método das diferencas finitas

descrito na sec¢ao 2.4 e substituimos no codigo fonte de SFcollapselD.

O primeiro passo foi replicar os resultados da secao anterior, tomando A = 0. Com
isso pudemos atestar que nossa implementacao nao possuia nenhum erro ®. Em seguida,
usamos a nossa implementacao modificada do programa para avaliar o fenémeno critico

no espago Anti de Sitter.

3.4 Fenomeno critico de campos escalares no espaco AdS

O procedimento seguido para a analise do fendmeno critico no espago AdS é o
mesmo descrito anteriormente para campos escalares no espago plano. Apresentamos aqui

os principais resultados e suas comparagoes com o caso anterior.

3.4.1 AdS com A = —0,001

Configurando SFcollapselD com A = —0,001 , realizamos os calculos para determi-
nar o valor do campo critico com um erro dn ~ 10~%. Realizamos o ajuste em duas etapas

e representamos na figura 10 o resultado final do ajuste.
3

Nossa implementagao final com as modificagoes no cédigo de SFcollapselD podem ser consultadas em
(LUCAS P. FRANCISCO;AMANDA G. SATO, 2021)
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Fonte: O Autor.

— fit
® Dados do SFcollapselD

-14 -12 -10 -8 -6 -4 -2
In|n—n«|

max

central €M funcdo de In|n — n.[, para

Figura 10 — Ajuste final para os dados de z = Inp
A = —-0,001.

Na tabela 2 apresentamos os resultados para os parametros do ajuste.

Fonte: O Autor.

Parametro | Valor encontrado
s 0, 336300
C —3,617329
v 0, 428248
A 0,251261
w 0, 606650
oo —0, 734963

Tabela 2 — Resultados obtidos para o fenémeno critico no espago AdS com A = —0,001.
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Com os valores de v e w e a partir de 2.45 calculamos A = §8,870881 e T' =
10, 357188.

342 AdS com A=-0,01

Repetindo o mesmo procedimento descrito na secao anterior, porém configurando

SFcollapselD para A = —0,01, obtivemos o ajuste da figura 11.

Fonte: O Autor.

— fit
® Dados do SFcollapselD

~10 -8 -6 —4 -2
In|n = n-|

max
central

Figura 11 — Ajuste final para os dados de z = Inp
A =—-0,01.

em fungao de In|n — n,| para

Esse ajuste foi feito em um intervalo menor de valores de In|n — n,| devido a
presenca de um comportamento inesperado para valores mais negativos dessa grandeza.
Atribuimos esse comportamento a instabilidades do método numérico e optamos por nao

incluir na nossa analise. Para os parametros do ajuste, calculamos os dados da tabela 3.

Fonte: O Autor.

Paradmetro | Valor encontrado
s 0,335176
C —4, 004196
~ 0,472388
A 0,210952
w 0,996367
oo 0,193102

Tabela 3 — Resultados obtidos para o fenémeno critico no AdS com A = —0,01.
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Os valores para os periodos oscilatérios foram A = 5,957846 e T = 6, 306097.

3.5 Analise dos resultados

Os resultados que obtivemos, estdo em diversos aspectos dentro das expectativas.
Como citamos anteriormente, (ZHANG et al., 2016) encontrou que a presenca de uma
constante cosmolégica positiva (em um espago dS) teria como um dos efeitos um aumento
do limiar de formagao de um buraco negro (representado aqui pelo campo critico). Nossos
resultados mostraram que a presenga de uma constante cosmolégica negativa (AdS) tende

a diminuir o valor do campo critico, como mostra na tabela 4.

Fonte: O Autor.
A B
0 0,336425
—0,001 | 0,336300
—0,01 | 0,335176

Tabela 4 — Campos criticos para diferentes valores de constante cosmoldgica.

Outro resultado interessante que obtivemos é a influéncia da constante cosmoldgica no
periodo universal do fenémeno de echoing. A presenca de uma constante cosmoldgica
aparenta aumentar o periodo, ou reduzir a frequéncia de oscilagao observada na solugao

subcritica. Como mostra a tabela 5.

Fonte: O Autor.
A T
0 4,461359
—0,001 | 10,357188
—0,01 | 6,306097

Tabela 5 — Periodo universal para diferentes valores de constante cosmoldgica.

A comparacao entre os dois valores de constante cosmoldgica ja é mais dificil, em parte
pelo fato de nossos céalculos para A = —0, 01 apresentarem ainda menor precisao do que os
demais. Tivemos que limitar nossa analise devido a um comportamento instavel da solucao
que se manifestou a medida que n — 7,. Instabilidades numéricas presentes no formalismo
ADM sao um fenémeno bem conhecido (WERNECK, 2020). Essas instabilidades também
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se manifestaram durante as tentativas de se analisar os sistemas dS, dessa forma nao
foi possivel fazer uso dessa versao de SFCollapselD para andlises rigorosas do fenémeno

critico no espago de Sitter.

Assim esperamos em trabalhos futuros aprimorar nossas analises com melhores

valores de dn e possivelmente fazer uso de um formalismo mais robusto como é o caso do
formalismo BSSN.
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4 Conclusao

Nesse trabalho apresentamos alguns resultados de nossos estudos em relatividade
numérica. Em particular, estudamos o colapso de campos escalares sem massa na presenca
de uma constante cosmologica. Para que isso fosse possivel, realizamos modifica¢oes no
programa SFCollapselD. Em nossas simulagoes fomos capazes de analisar o fendmeno
critico, caracteristico de transigoes de fase, originalmente descoberto por Matthew Choptuik
(CHOPTUIK, 1993), e como esse é afetado pela presenca de uma constante cosmolégica
negativa. Constatamos que a presenca de uma constante cosmologica negativa tende a
facilitar o colapso gravitacional, o que esta de acordo com alguns resultados da literatura
(ZHANG et al., 2016). Além disso verificamos que no fenémeno critico, a constante
cosmologica atua como um fator atenuante das oscilagoes observadas originalmente por
Choptuik, reduzindo a frequéncia de oscilagdo caracteristica do fendomeno de echoing.
Entretanto, algumas limitagoes foram observadas em nossos estudos, que restringem
interpretacoes quantitativas mais rigorosas. Atribuimos essas limitagoes a dois fatores.
Primeiro, ao nosso uso de uma precisao restrita nas simulacoes, que foi adotada por
limitacoes de tempo e recursos computacionais. Em segundo lugar, pelo uso do formalismo
ADM, que apresenta algumas limitacoes intrinsecas no que tange a estabilidade do método.
Visamos contornar essas limitacoes e ampliar os casos analisados em trabalhos futuros,
estudando, por exemplo, modelos mais proximos da realidade fisica, usando fluidos de

fundo que possam afetar a formacao de buracos negros.

O colapso gravitacional em um espaco AdS é relevante ndo somente pelas questoes
pertinentes ao problema da constante cosmologica (WEINBERG, 1989) mas também
apresenta relevancias em fendmenos de transicao de fases pela correspondéncia AdS/CFT
(ARSIWALLA et al., 2011). Além disso, com os resultados mais recentes do LIGO (Laser
interferometer Gravitational-Wave Observatory) e VIRGO, e com os futuros resultados
de experimentos como o do interferémetro LISA, uma nova era de estudos de fenémenos
gravitacionais estd por vir. Para a interpretacao desses fendmenos, modelos tedricos e
computacionais mais robustos sao necessarios. O fendmeno de colapso possui relevancia
também nesse tipo de fendmeno, tendo em vista que o colapso de massas em rotacao pode

ser uma fonte importante de ondas gravitacionais.

Portanto, o estudo do fenémeno de colapso e das suas varias instanciagoes é uma

area de pesquisa promissora que ainda pode ser vastamente explorada.
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